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Résumé

L'ETUDE THEORIQUE DES VIBRATIONS DU TYMPAN
AU MOYEN DE LA METHODE DES ELEMENTS FINIS
On analyse la structure et les propriétés structurales du tympan des

mammiféres, et adopte des descriptions précises dans le but de modeler les
tympans de l1l'homme, du chat et du cobaye. On discute les observations
expérimentales des vibrations du tympan, et les raisons possibles pour la
contradiction entre les résultats de Békésy et ceux des autres. La méthode
des &léments finis est présentée comme outil de grande valeur pour 1l'analyse
mécanique du tympan. On décrit des méthodes pour la simulation du manche du
marteau, des osselets, et des cavités de l'oreille moyenne. En employant la
méthode des 8léments finis, on démontre qu'un modéle trés simple du tympan,
comme membrane plane tendue, posséde plusieurs des caractéristiques du tympan.
On étudie aussi un modéle plus réaliste, comme planche courbe, mince et iso-
trope, et le suggére comme une description nouvelle de la fonction du tympan.

Abstract

A THEORETICAL STUDY OF EARDRUM VIBRATIONS
USING THE FINITE-ELEMENT METHOD

The structure and structural properties of the mammalian eardrum are
reviewed, and specific descriptions and parameter values are adopted for the
purposes of modelling the human, cat and guinea-pig eardrums. Experimental
observations of eardrum vibrations are re-—examined; possible reasons for the
discrepancy between Békésy's results and others are discussed. The finite-
element method is presented as a useful tool for analyzing the mechanical
behaviour of the eardrum. Methods are described for simulating the manubrium
embedded in the drum, and the effects of the ossicular chain and middle-ear air
cavities. Using the finite—element method, it ié shown that a very simple model
of the eardrum as a blane membrane under tension is able to duplicate many of
the eardrum's characteristics qualitatively. A more realistic model of the
eardrum as a thin isotropic curved plate (shell) is also investigated, and is

proposed as a new description of eardrum behaviour.
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Notation

Particular symbols will be defined where appropriate throughout the

In general, however, bold-face majuscules will be used to denote
Light-face

text.
matrices, and bold-face minuscules will denote column vectors.

symbols will indicate scalars. Transposition of matrices and vectors will

be denoted by primes (A', v', ete.).



CHAPTER 1

INTRODUCTION

1.1 Objectives

Presently available models of the eardrum are inadequate either to
provide insight into the principles of the mechanical operation of the drum,
or to permit quantitative analysis of pathological conditions as an aid to
planning and evaluation of corrective techniques. The over-all objective of
the work reported here is therefore the study of the mechanical behaviour of
the mammalian eardrum.

More specifically, one objective of this work is a review of the experi-
mental data available concerning eardrum structure and behaviour, in order to
provide a firm basis for quantitative modelling and to identify areas where
further information is required. A second objective is the introduction of the
finite-element method as a powerful tool for the study of eardrum models. This
method will be used to investigate a new hypothesis' concerning the essential

nature of the eardrum as a mechanical system.

1.2 Outline

Chapters 2 to 4 are a review of structure and mechanical properties of
the eardrum and its surroundings. In particular, Chapter 2 reviews the anatom-
ical structure of the eardrum, Chapter 3 covers its properties, and Chapter 4
discusses the surrounding structures and their coupling to the eardrum.

Chapter 5 reviews the experimental data available concerning the vibrations
of the gardrum under acoustical stimuli. Chapter 6 then considers the various
theories that have been proposed to describe the function of the eardrum.

Chapters 7 and 8 introduce the finite-element method. Chapter 7 discusses
the concepts involved, while Chapter 8 gives more details on the methods actually



used in this work.

Chapters 9 to 12 concern the actual use of the finite-element method on
two models of the eardrum. Chapters 9 and 11 describe the models themselves
while Chapters 10 and 12 present the eardrum behaviour calculated from the
models. One of the models represents the eardrum as a curved shell. This is
a new way of looking at the eardrum; it is basically simple and yet is consis-
tent with what is known about the drum. The other model presented here assumes
the eardrum to be a plane membrane under tension. This is not to be taken as a
realistic model, but is included because it shows how much of the eardrum's
behaviour can be explained in terms of extremely simple models, and because it
permits the qualitative study of dynamic effects that are much more difficult
with the shell model. |

Finally, the conclusions are presented in Chapter 13, together with a

discussion of possible future developments.



CHAPTER 2

STRUCTURE OF THE EARDRUM

2.1 Introduction

This chapter presents a brief description of mammalian eardrum
structure. Sections 2.2 and 2.3 present the gross anatomy and
microscopic structure, respectively, of the mature drum, and then
Section 2.4 discusses the drum's ontogenesis. Section 2.5 is a short
review of eardrum evolution, to put the structure of the mammalian

drum in perspective.

2.2 Gross Anatomy

2.2.1 Introduction. The following paragraphs will present the

shape and thickness of the eardrum. The discussion will compare the
situations in various mammals. Section 2.2.2 will describe the outline

of the base of the eardrum, that is, the shape of the tympanic ring, and.
the position of the manubrium within that outline. The next section will
then discuss the conical shape of the drum, and Section 2.2.4 will discuss
the curvature of the sides of the cone. Finally, Section 2.2.5 will

discuss the thickness of the eardrum.

2.2.2 Tympanic ring and manubrium. Fig. 2.1 shows a schematic

outline of the human eardrum. There are three main anatomical areas
demarcated: the pars tensa, the pars flaccida and the manubrium. The
pars tensa forms the main surface of the drum, with the manubrium (handle)
of the malleus embedded in it. The pars flaccida is a less important

(and more elastic) part of the drum surface. The pars tensa is entirely

surrounded by the annular ligament, a thickened fibrous structure which
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pars flaccida

manubrium

pars tensa

Fig. 2.1. Schematic outline of the human eardrum. (After
Kojo, 1954)
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joins the pars tensa to the surrounding tympanic bone and, superiorly,
separates it from the pars flaccida. '

Fig. 2.2 shows outlines of the eardrums of a number of mammalian
species, all drawn to approximately the same scale. (The human drum is
shown again for comparison.) In each case the outline is oriented so
that the rotational axis of the malleus and incus is approximately
horizontal. Two features may immediately be noted as being very
variable: the size of the pars flaccida, and the angle between the
manubrium and the axis of rotation. The pars flaccida is very large
in the sheep and mouse, and absent in the guinea pig. In man and cat
it is moderately small.

In some species, including man and guinea pig, the manubrium is
almost perpendicular to the ossicular axis of rotation. 1In these cases
the drum tends to be almost circular, and the manubrium is located nearly
centrally. In other species, the angle between the manubrium and axis
becomes quite small; here the drum tends to be elongated, and the
manubrium is closer to the anterosuperior edge.

Note that the drums shown are all of siﬁilar size in spite of thev
great body-size differences among the species.

A parameter which is of considerable interest in discussions of
middle-ear function is the ratio of the area of the eardrum to that of
the oval window, since this is the largest single factor contributing
to the middle-ear transformer ratio. Fig. 2.3 displays these areas
separately (a), and also their ratio (b), for a number of mammalian
species for comparison. Note that the figures indicate the area
enclosed by the tympanic annulus, rather than the actual surface area
of the conical drum.

The number of species shown is small, but some trends are visible.
The semi-aquatic and fossorial (burrowing) species all have a similar
area ratio in spite of the range in body size and the phylogenetic
diversity. The ratio is small, presumably reflecting the relative

unimportance of air-borne sound to these species.
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——

Fig. 2.2. Outlines of several mammalian eardrums. P = primate
(human) ; R = rodents (mouse, rabbit and guinea pig, from left to right);
C = carnivores (dog, cat); U = ungulates (sheep, ox, pig). The dashed
lines were not present in the original drawings, and have been filled in
based on my own observations or on various drawings and descriptions in
the literature. They are meant to be suggestive only. (Mouse after
Reijnen & Kuijpers, 1971; cat after Khanna, 1970; sheep after Lim, 1968b;
all others after Fumagalli, 1949)
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Fig. 2.3. Areas of tympanic annulus and of oval window, for various
mammalian species. Part g shows the areas separately, while part b shows
the ratio of the areas. Note that 'B.sheep' = Barbary sheep, and 'G.pig'
= guinea pig. (Based on data of Kirikae, 1960)
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The ungulates and rodents are both large, diverse families, and
this diversity shows in the spreads in both the area and ratio data.

The three species of carnivore shown are remérkably uniform in
both areas and ratio. The latter is quite high, which might represent
a great dependence on hearing in this Order.

The two primate species shown have very similar area ratios in
spite of a change in actual area by a factor of about three. The area
ratio is small, which might indicate a reduced importance of hearing
sensitivity in these species.

In some specialized rodents (among the Dipodidae and Gerbillinae)
an accessory tympanic membrane (Hyrtl's) is found. Its position is
similar to that of the pars flaccida, but structurally it is the same
as the pars temsa. Lay (1972, p. 57) feels that it contributes
significéntly to the middle-ear transformer. I shall not consider it

further in this work, although it deserves further study.

2.2.3 Conical shape. The mammalian eardrum is approximately

conical, with the apex pointing medially. Fig. 2.4 illustrates this
for a number of species, based on data of Fumagalli (1949). TFor

these diagrams the sides of the cone have been taken to be straight.
For each species, the triangle on the right represents a section along
the long axis of the manubrium, perpendicular to the plane of the
tympanic ring. The triangle at the bottom represents a plane of
section perpendicular to the manubrial axis and to the plane of the
tympanic ring.

Fumagalli found that the eardrum shapes of all of the species he
observed could be represented approximately by a cone with an apex
angle of 1209, cut at various angles by the plane of the tympanic ring.
The guinea-pig drum is a right cone, but the others all show some
degree of obliquity, correlated with the angle of the manubrium

commented on in the previous section.
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guinea pig

rabbit

man

pig

—— s

Fig. 2.4. Schematic representations of the conical shape of the
eardrum for several mammalian species. The horizontal triangles represent
sections through the drum perpendicular to the manubrium; the vertical
triangles represent sections through the manubrium. The sides of the drum
are shown by straight lines. (After Fumagalli, 1949)
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2.2.4 Curvature. The sides of the cone formed by the eardrum
are not actually straight but are convex outward, as shown in Fig. 2.5.
There are no reliable and precise data in the literature concerning the
actual curvature of the drum. Kojo (1954) published six contour plots
representing the three-dimensional shape of the human drum, but they
were published on quite a small scale and are rather irregular. They
were obtained from castings made by pouring paraffin into the external
ear canal, and this process probably introduced considerable distortion.
Kirikae (1960), in addition to using paraffin moulds, also reported a
single pair of curves taken by photographing ''the shape of the impressed
tympanic membrane" from directiomns corresponding to the two views in
Fig. 2.5. I do not know what he meant by "impressed'". The data are
shown in Fig. 2.6; they are significantly different from the results
he reported for the paraffin moulds.

More recently, Khanna & Tonndorf (1975) have used moiré topo-
graphy (an optical technique).to study the three-dimensional shape of
the guinea-pig eardrum. They apply a very thin layer of casting
material to the drum, and then remove it when it has set. The
measurements are taken from this casting. vAh example of the sort of
contour patterns obtained is shown in Fig. 2.7. The effect of the
procedure on the curvature is presumably less than that of the earlier
paraffin moulds, and can be checked by means of a few point-by-point
measurements of the shape of the drum before and after the casting.

Kirikae (1960) measured the angle included in the apex of the
curved cone formed by the eardrum in each of several species, but
reported only that it "ranged from 97° for Barbary sheep to 135° for
the mole and squirrel in mammals'.  He noted that the ungulates and

carnivora had "acute" apex angles and generally had long manubria

(compared to the diameter of the drum) while other animals, with "obtuse"

apex angles, have short manubria with the umbo located near the centre
of the drum. (His usage of "acute" and "obtuse", if intended to mean
"less than'" and '"greater than" 900, is inconsistent with the reported

range of apex angles.)

10
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b

Fig. 2.5. Schematic representations of the curvature of the
mammalian eardrum. Part a is a section through the human eardrum
perpendicular to the manubrium; part b is a section through the manubrium
of the pig eardrum. (After Fumagalli, 1949)

11
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Fig. 2.6. Point-by-point measurements of the shape of the human
eardrum. The bottom set of points represents asection through the eardrum
perpendicular to the manubrium, while the points at the right represent a
section through the manubrium. (Based on data of Kirikae, 1960)

12
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Fig. 2.7. An example of a contour pattern defining the shape of the
guinea-pig eardrum, obtained using moiré topography. The vertical straight
lines indicate the moiré grating. The curved contours, produced by interference
between the shadow of the grating on the eardrum and the grating itself, repre-
sent lines of constant depth. This Figure is a retouched version of a photo-
graph from a preliminary series of experiments (Khanna, personal communication).
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The curvature of the eardrum described above is apparently
universal among mammalian eardrums. Even in the Monotreme platypus,
which in many ways 1s a very primitive mammal, and in which the middle
and inne: ear shows many differences in detail from the mammalian norm,
the eardrum has the normal curvature (judging from Fig. 2.8, which is
adapted from Gates et al., 1974). The echidna, the only other living
Monotreme, does not appear to have a typically curved drum, but here
the gross mechanical behaviour of the entire middle ear is unusual

(Aitkin & Johnstone, 1972).

2.2;5 Thickness. There are not many detailed data available
concerning eardrum thickness. Kojo (1954) measured the thickness at
seven locations on each of seven human eardrums: the total range was
from 30 to 120 uym, with the average values for the seven locations
ranging from 55 to 90 um. By comparison, Lim (1970) reported that the
human eardrum varies in thickﬁess from 30 to 90 um. The cat drum is
30 to 50 um thick, and the guinea-pig drum is about 10 ym thick (Lim,
1968a).

Kojo found the drum to be thinnest part~way between the periphery
and the manubrium, as shown in Fig. 2.9. _

In.my subsequent discussion of the density of the eardrum (Seétion
3.8) I shall need a value for its volume. I am not aware of any previous
measurement or estimate of this. I have estimated it from Kojo's thick-
ness data by averaging the thickness found in the inner, middle and outer
regions, weighted by the surface areas of these regions. (From Kojo's
Fig. 6, I have estimated the regional areas to be 4, 15 and 45 mm2,
respectively.) I arrive at an estimated drum volume of 5 m3. As
indicated in Section 3.8, however, this estimate appears to be too low.
More detailed measurements are required.

In the models presented in subsequent chapters, I have used eardrum
thicknesses of 40 ym for the cat and 10 ym for the guinea pig. For the
human drum I have assumed 50 ym, which is the value used by Békésy (1949)

in his calculation of the stiffness of the eardrum (see Section 3.4).
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1mm

Fig. 2.8. Eardrum and manubrium of a platypus. The eardrum is

conical pointing inwards, with the sides being convex outwards.
Gates et al., 1974)

(After

15
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Fig. 2.9. Diagrammatic representation of the human eardrum-thickness
data of Kojo (1954). The height of each cylinder is proportional to the
average measured thickness of the eardrum at that point. The length of the
small vertical line atop each cylinder indicates half of the range of the
measurements in seven eardrums; the lower half is omitted for clarity. The
tallest cylinder represents a thickness of 90 um.

16
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2.3 Microscopic Structure

2.3.1 Introduction. The pars tensa is composed of three layers:

an outer epidermal layer; the lamina propria; and an inner mucosal layer.
The first and last of these will be discussed in Sections 2.3.2 and 2.3.3,
respectively. The lamina propria will be discussed in Sections 2.3.4 and
2.3.5, covering the subepidermal and submucosal connective tissue layers
in 2.3.4, and the two highly organized fibre layers in Section 2.3.5.

- The pars flaccida is much the same as the pars tensa except that it
lacks the highly organized layers of the lamina propria, and contains a
higher proportion of elastic fibres compared to inelastic (collagen) ones.
It is usually small, and because of its greater elasticity has little
effect on the vibration of the eardrum. I shall not conmsider it further;

for a detailed study see Lim (1968b).

2.3.2 Epidermal layer. This layer is continuous with the epidermis

of the external ear canal, and is quite similar to epidermis found else-
where on the body. Thus, I shall first describe briefly the structure of
typical epidermis and then discuss the characteristics peculiar to eardrum
epidermis.

Epidermis is cellular tissue composed of five layers. The deepest
layer (stratum basale, or germinativum) is a single layer of reproducing
epithelial cells, which gradually migrate toward the higher layers. By
the time they reach the third layer (stratum granulosum) considerable
degeneration of nuclei and of intercellular bridges has occurred, and
keratohyalin granules have started to appear. By the fourth layer most
of the cells are dead, and by the fifth and outermost layer (the stratum
corneum) all of them are metabolically inactive: they are dehydrated,
flattened and stacked in regular layers, and the nuclei and cytoplasm
have been replaced by the fibrous protein keratin. This progression
from stratum basale to stratum corneum takes a cell about two weeks
typically; the cell then spends another two weeks in the stratum corneum

and finally is sloughed off (desquamated). (For further details, see
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Wilkes et al., 1973, among others.)

The epidermis of the eardrum and of the deepest (bony) part of the
external ear canal 1s basically as described above, but it is somewhat
speclalized — 1t does not contain any glands or hair follicles (Johnson
et al., 1968; Reijnen & Kuijpers, 1971, for example) as does other skin,
and also it shows powers of lateral migration not encountered in epidermis .
elsewhere. (Magnoni, 1938; Alberti, 1963, 1964; Litton, 1968). The drum
epithelium constantly migrates outward from the centre of the drum as new
cells are formed, desquamating only when it reaches the cartilaginous
portion of the ear canal. The process accounts for the self-cleaning
abllity of the ear canal.

The stratum corneum, although very thin, is very demse. It is
- possible that it has some effect on fhe mechanical properties of the

eardrum.

2.3.3 Mucosal layer. The mucosal layer of the eardrum is a con-

tinuation of the mucosal lining of the middle-ear cavity. It is a very

thin layer of cells and presumably has no mechanical function.

2.3.4 Loose connective-tissue layers. The subepidermal and sub-

mucosal connective-tissue layers contain abundant collagen fibrils held
in a considerable volume of ground substance. There are a few elastic
fibres near the pars flaccida.

The collagen fibres are described as "irregularly arranged" (Lim,
1970) and "loose" (Lim, 1968a), but in some photomicrographs (Lim, 1970,
Fig. 3a; Lim, 1968a, Fig. 4a) there does seem to be a dominant direction.
This organization is presumably only local. These connective-tissue

layers probably have little effect on the behaviour of the eardrum.

2.3.5 Fibre layers. The main structural components of the eardrum

are the highly organized radial (outer) and circular (inner) fibre layers.
They consist of parallel arrays of fibres in a relatively scanty matrix of

ground substance. Between the two layers is a thin layer of oblique fibres.
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The detailed descriptions of this layer differ between authors and
between species, and the fibres have at various times been called
parabolic, crescentic and transverse. Although Fumagalli (1949)
ascribes a functional significance to these fibres, at least in some

species, it would seem that they are too few to be of major importance.

There are also a few radial fibres on the medial surface of the circular—‘

fibre layer, which presumably are not very important. Shimada & Lim
(1971) have recently reviewed the status of these miscellaneous fibre
systems.

The radial fibres generally run more or less straight from the

manubrium to the annular ligament, although some curve before reaching
the latter (Shimada & Lim, 1971, for example). The fibres become more
closely packed as they converge on the manubrium.

Relatively little attention has been paid to the precise way in
which the fibres insert into the manubrium and annular ligament.
Fumagalli (1949) reported that in the upper third of the manubrium the
radial fibres cross the lateral face of the manubrium and wrap part-way
around before inserting, while lower down the anterior radial fibres
change patterns and wrap around the medial face of the manubrium. More
recent authors have neither confirmed nor denied this pattern. Tonndorf
& Khanna (1972) noted a difference between the fibre insertions in the
cat and those.in man: in the cat the fibres insert directly into the
manubrium, whereas in man the fibres are connected to the middle portion
of the manubrium by a short 1igément (Politzer, 1889, Fig. 138-141, for
example).

The circular fibres start from the manubrium, curve around below

the umbo, and insert again on the opposite side of the manubrium. Most
of them are attached to the manubrium fairly close to the upper end, near
the short process. The circular-fibre layer is less well developed than
the radial-fibre layer, and near the centre of the drum is very thin or
even absent. It grows thicker toward the peripher&. Helmholtz quoted

two earlier authors (Gerlach, Gruber) as stating that it is absent or
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very thin at the extreme periphery, but Gruber (1867) at least was
apparently just alluding to the fact that few circular fibres actually
enter the tympanic annulus. n

The fibres of both the radial and circular layers are composed of
some typical collagen fibrils (diameters on the order of 50 nm) mixed
with large numbers of finer fibrils (about 5 nm square, apparently
composed of four sub-units). In the guinea pig, none of the larger
fibrils are found at all (Lim, 1968a). In man, the proportion of the
finer fibrils compared to thé larger ones is greater in the radial fibres
than in the circular fibres (Lim, 1970).

The nature of the finer fibrils is not known. They do not show the
65-nm banding typical of collagen (caused by a véry regular alignment as
the 1.5-nm-diameter, 300-nm-long molecules combine to form filaments and
fibrils). On the basis of an amino-acid analysis, Johnson et al. (1968)
suggested that they are neither collagen nor elastin: their amino-acid
composition shows some of the features of both. Other authors have
suggested that they are keratin or reticulin, two other fibrous proteins
(see Lim, 1970, for discussion). They could also be a form of collagen
whose supramolecular structure is not sufficiently regular to display
banding. The composition of collagen can vary considerably from tissue
to tissue, and between species (see, for example, Dayhoff, 1972; Stenzel
et al., 1974).

2.4 Ontogenesis of the Eardrum

According to Pearson et al. (1967) the human eardrum starts to
develop early in foetal life and is "well formed" by the fourth month,
but Keith (1923) wrote that the outer aspect of the drum is formed during
the seventh month by the breakdown of the older cells of a solid ingrowth
of epithelium from the outside of the skull; the inner aspect is formed
"during the later months of foetal life" by absorption of the gelatinous

tissue in the tympanum. At birth the human drum is of nearly adult size
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but is almost horizontal; during childhood the external auditory meatus
lengthens and the drum becomes more vertical (Pearson et al.). At birth
the tympgnic space is still partially filled by a residue of connective
tissue which is gradually absorbed within the first few months df life
(Patten, 1953); whether any of this unresorbed tissue touches the eardrum
is not clear.

Concerning the microscopic structure of the drum, Zanzucchi (1938)
reported that in man the system of elastic fibres around the periphery,
and at the insertion of the malleus, does not form until after the first
~ year of life, and that it continues to develop thereafter. The only post-
natal modification found by Filogamo (1943) was a very slight increase in
fibre diameter.

I am not aware of any data concerning eardrum thickness before and

after birth, nor of any ultrastructural studies of eardrum development.

2.5 Evolutionary Trends

2.5.1 Introduction. The following discussion is presented in order

of phylogenetic development, followed by a discussion. Except for the
paragraph on insects, much of the material is based on wark by Filogamo
(1949) and Owada (1959).

2.5.2 Invertebrates. An eardrum, in the sense of a thin structure

with air on both sides acting as an acoustic receptor, evolved once among
the vertebrates (as the amphibians moved from water onto land). Such
structures, functionally but not anatomically related, also developed
several times among the invertebrates. The insect "eardrum" is a simple
plane structure, and its principles of operation are very different from

those of the vertebrate ear (Michelsen, 1971, 1973; Adams, 1972).
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2.5.3 Amphibians. The earliest vertebrates were aquatic and did
not have an eardrum vibrating in air. The typical amphibian eardrum is
plane, and consists mainly of a set of radial fibres which converge on
a thick fibrous disk in the centre. The fibres are apparently composed
of elastin or a similar protein, as opposed to a collagen-like protein.
The drum transmits vibrations to the extracolumella whose tip is set in
the centre of the fibrous disk. There are radial bundles of muscle cells

distributed among the fibres.

2.5.4 BReptiles. Evolved from the earliest amphibians, the reptiles
have an eardrum which typically is flat except for a small lateral pro-
trusion at the centre. There are non-radial fibres in addition to the
radial ones, and there are both elastic and collagenous fibres inter-
mingled. The non-radial fibres are grouped into three or four bundles.
The attachment of the extracolumella is by processes embedded in the drum,
rather than by a simple attachment of the tip. Only the radial fibres are
inserted into these processes. The bundles of muscle cells are now found
around the inferior border of the drum, rather than in the interior.

Note that some reptileé, such as turtles and snakes, do not rely
on air-conducted sound and do not have the typical thin air-suspended

eardrum.

2.5.5 Birds. The avian eardrum is evolved from the reptilian.
It is markedly conical, pointing outward. Again there are radial and
non—radial fibres, elastic and collagenous, all intermingled, and again
the non-radial fibres are grouped into a few bundles. There are also
some bundles of radial fibres. The extracolumella is again attached
by processes embedded in the drum, mainly by radial fibres. There are
no longer muscle cells within the drum but there are some tendon fibres

from the tensor muscle.
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2.5.6 Mammals. The mammals have evolved from the reptiles
independently of the birds. As described in previous sectionms, the
drum is conical as in birds, but pointing inward‘instead of outward.
There are few or no elastic fibres except near the periphery, and the
radial and non-radial fibreS'afe separated into two distinct layers.
A process of the malleus is embedded in the eardrum, analogous to a
process of the extracolumella, and the main attachments to it are
again by radial fibres. There are neither muscle cells nor tendon
fibres in the drum, the tensor muscle inserting directly into the
malleus.

Note that some groups of mammals, such as the whales, no longer

use the typical arrangement described above.

2.5.7 Discussion. There are some trends in the evolution of the
eardrum which are of uncertain significance but which are suggestive.
After the amphibians, collagenous and non-radial fibres were mixed in
with the radial elastic ones, the type of coupling to the middle ear
was changed, and the muscle cells and tendons were gradually removed
from the surface of the drum. After the reptiles, the drum became
strongly conical. The mammals are peculiar in having lost all of the
elastic fibres, and in having the radial and circular fibres completely
separated into two different layers.

With respect to the fact that both birds and mammals have conical
drums, albeit pointing in opposite directions, it is interesting to note
that Gaudin (1968) has suggested that birds also have an effective
ossicular lever, implemented differently than the mammalian one is.
From an illustration in Gaudin (1968), it would appear that the avian
drum as well as the mammalian has sides that are curved and convex

towards the interior of the cone.



CHAPTER 3

, STRUCTURAL PROPERTIES OF THE EARDRUM

3.1 Introduction

The first two sections below will deal with the general questions
of isotropy and uniformity, respectively, of the mechanical properties
of the eardrum. The following sections will then deal in turn with the
éardrum's stiffness, Poisson's ratio, tension, internal damping, and
mass. In each section, after a review of the experimental results
available and a discussion of their significance, I shall conclude by
stating what characteristics have been adopted for each of the two

models (membrane and shell) presented in later chapters.

3.2 Isotropy

A material is mechanically isotropic if its mechanical properties
are the same in all directions. In the cases of membranes and thin plates
~one is not concerned about the properties in directions normal to the
surface, and the question of isotropy becomes two-dimensional. This is
the situation with the eardrum since its thickness is very small compared
to its diameter. )

Békésy (1941) said that, in studies "in which small portions of the
eardrum were cut out', he found that there was a difference in strength
in different directions but that elasticity was "of the same order of
magnitude'. He also said that, if one touches a fresh eardrum with a
fine hair, the resultant depression will '"nearly always'" be circular,
indicating isotropy. In a later paper (1949) he said that eardrum
elasticity shows '"mo change with direction'"in either guinea pig or man,

in spite of a definite tendency of the guinea-pig drum to split in the
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radial direction. Unfortunately, no further détails were published
concerning any of these observatioms.

Kirikae (1960), in his studies of adult human eardrums, found that
the intact drum responds in the same way to small slits cut in different
directions. However, when he removed the epidermal layer the slits pulled
open when cut perpendicular to the radial fibres, but not when they were
parallel. |

In evaluating the above observations, three factors must be takeﬁ
into account. First, there is always the possibility of post-mortem
changes when working with cadaver material. Second, the displacements
involved in observing either depressions in the drum or the behaviour
of slits are much larger than those due to acoustical vibrations in the
normally operating eardrum. Third, tests involving slits may produce
local fibre damage and distortion that affect the observed behaviour,
as remarked on by Wilkes et al. (1973) in connection with puncture tests
in skin. .

' Anatomical evidence would appear to indicate some degree of aniso-
tropy in the eardrum. Each of the two layers of fibres, radial and
circular, is geometrically highly anisotropic, being composed of regular
arrays of unbranching fibrils and fibres. Such an arrangement should be
much stiffer along the axis of the fibres than across it, unless the
transverse bonding (presumably due to the ground substance) is very
strong. In addition, the circular layer is thinner than the radial
layer, which suggests that the drum should be stiffer in one direction
than in the other. This assumes, of course, that the drum's properties
are determined by the fibrous layers. Kirikae's observations of the effect
of removing the epidermal layer, mentioned above, indicate that this layer
has some effect on the mechanical behaviour of the overall eardrum.

Although further work is required to resolve the question, at
present there is no experimental evidence of eardrum anisotropy under
normal operating conditions. Therefore, in both the membrane and the
shell models presented later, I assume that the eardrum's mechanical

properties are isotropic, except in Section 12.10 where one case is
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presented illustrating the effect of reducing the stiffness of the

circular fibres.

3.3 Uniformity

Békésy (1941, 1949) did not mention having measured eardrum stiff—
ness at different locations. His only remarks concerning eardrum
uniformity concerned the "lower fold". He said that at the lower edge
of the human drum there is a "pronounced fold ... that permits free
movement of the cone", and by implication he referred to it as a '"special
elastic structure™. It is not clear, however, 1f he was referring to a
structural non-uniformity. In the guinea pig he said there is no lower
fold, but that the same purpose is served just by the geometry of the
cone. Kirikae (1960) reported that the behaviour of small slits cut in
the human eardrum is independent of location.

Békésy (1949), in his observations on calf and sheep eardrums,
found that the behaviour of cut-out flaps was independent of place. This
is of little rélevance for the human and guinea-pig drums, however, because
of the apparently great difference in construction.

Anatomically one expects some degree of non-uniformity in the drum.
The circular fibres become fewer toward the centre of the eardrum and the
radial ones become less closely packed toward the periphery. Kojo (1954)
found the drum to be thinner part-way between the periphery and the centre
(see Section 2.2.5 above). 1In addition, the radial fibres are absent in
a small area near the pars flaccida. However, there are no experimental
measurements to support the assumption of non-uniformity of mechanical
properties, except perhaps for mass density (see Section 3.8 below).

In this thesis I have assumed complete uniformity of the pars tensa

in both the membrane and shell models.
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3.4 Stiffness

3.4.1 Introduction. B&késy (1949) and Kirikae (1960) reported

measurements of the elasticity of the eardrum. The two sets of experi-

ments are discussed in Sections 3.4.2 and 3.4.3, respectively. Section
3.4.4 1s a discussion of the differences between the two. Section 3.4.5
compares their results with measurements on collagen, and Section 3.4.6

concludes with a statement of the stiffness values used in the models.

3.4.2 Békésy (1949) measured the bending stiffness of‘the human
cadaver eardrum by cutting out a rectangular flap along three sides.

The flap formed a cantilever beam 2 mm long and 0.5 mm wide. He applied
a pre-calibrated force of 0.2 mg to the free end and measured the dis-
placement to be 50 ﬁm. Assuming the flap to be a 50-pm-thick, uniform,
isotropic beam clamped at one end, he used a standard formula from
mechanics to calculate an elastic modulus of 2 x 108 dyn cm-z. He stated
that the elastic coefficient is about the same in the guinea pig, presum-
ably on the basis of similar measurements.

The displacement measured by B&késy was about equal to the thickness
of the eardrum. It was about 60 times (35 dB) larger than the largest
low-frequency (525 Hz) drum displacement of the human drum measured by
Tonndérf and Khanna (1972) at 121 4B SPL. This would be beyond the
linear range in the intact middle ear. However, the classical beam-
bending theory used in calculating the elastic modulus predicts a maximal
3 dyn cm_z, compared to the breaking stress
of more than 15 x 108 dyn cm_2 reported by Wilkes et al. (1973) for colla-

fibre stress of only about 2 x 10

gen tendbn. On this Basis_it would appear that Békééy's measurement was
not forcing the eardrum fibres into nonlinear operatiom.

Békésy (1949) also measured the stiffness of the calf eardrum, using
a somewhat different technique. From his description the arrangement would
seem to have been as shown in Fig. 3.1. A flap was cut out, rolled into a
rbd, and supported against the tympanic ring. He used the formulae from

mechanics appropriate for a uniform, isotropic cylindrical beam clamped
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Fig. 3.1. Arrangement of Békésy's calf-eardrum measurement, based on
his description. Part a shows the way in which a flap was cut in the eardrum;
the actual position and size of this flap are conjectural. Part b shows

longitudinal and transverse sections through the flap after it has been rolled
The arrow indicates where the force was applied.
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at one end, and arrived at an elastic modulus of 2 x 104 dyn cm-z, very
much smaller than the value found for the human and guinea-pig drums.
He might have underestimated the stiffness somewhat by modelling thé
rolled-up flap as a solid cyliﬁder when in fact it was a laminar struc-
ture with the laminae not bonded together. However, the drum he was
examining was definitely unusual, being described by him as "a kind of
gelatinous film", very viscous, about 100 um thick. Filogamo (1949)
did not make note of any unusual characteristics of the bovine eardrum
in his comparative anatomical study of 20 mammalian species. The

peculiarity of Békésy's specimen might be attributable to immaturity.

3.4.3 Kirikae (1960) measured the stiffness of a 10-mm-long,
1.5-mm-wide strip of human eardrum, vibrating longitudinally at 890 Hz.
He calculated a Young's modulus of 4 x 108 dyn cm—z, based on a drum
thickness of 75 ﬁm. Taking the thickness as 50 um, as Békésy did,
would have given a modulus of 6 x 108 dyn cm-z. These values are two
and three times stiffer than Békésy's, respectively.

From the details published by Kirikae (1960) it is not possible
to calculate either the forces or the displacements imposed on his
specimen, in order to decide whether or not it was operating linearly.
However, he reported that he obtained the same results when the weight
hanging from the eardrum strip was varied from 300 mg to 1000 mg,
indicating linearity.

3;4.4 Differences. There are four chief differences between the

experiments of Bé&késy and Kirikae that may explain the difference between

their elastic moduli (apart from the question of whether the sample was
acting linearly in each case). TFirst, the sizes, positions and orien-

tations of their samples were different. Kirikae's strip was almost as

long as the drum diameter, and was located across the drum below the umbo.

Thus, the radial fibres were approximately normal to its length in some

places, the circular fibres were approximately normal to its length in
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others, and in the part nearest the umbo there were very few circular
fibres at all. By contrast, Békésy's flap was only a f£ifth as long
and a third as wide, so the fibre distribution within it would have
been more uniform. Unfortunately Békésy did not describe the position
or orientation of his flap.

A second difference between their experiments was that Békésy
measured a transverse displacement while Kirikae measured a longitudinal
one. This would not matter if the strips were truly isotropic and
uniform.

Third, Békésy's measurement was static while Kirikae's was dynamic
(890 Hz). There are no data available to indicate whether a frequency
dependence of the elastic modulus is to be expected. A number of common
polymers, such as natural rubber, thermoplastics and crystalline polymers,
have more-or-less constant elasticities within and below the audio-
ffequency range, while in high-damping rubbers the stiffness increases
rapidly over this range (Snowdon, 1968). Witnauer & Palm (1961) found
the modulus of elasticity of leather to be practically the same at 15
to 20 Hz as at 0 Hz.

A fourth difference between the two sets of experiments involves
the handling of the specimens and the environmental conditions during
testing. The length of time the specimen has been without an intact
blood supply may be significant. In addition, the temperature and
humidity of the air in which the testing takes place are important.
Kirikae used a temperature of 18 C and a relative humidity of 757.

Békésy (1949) said only that his measurements were donein a chamber

with "controlled humidity". In an earlier (1941) paper he mentioned

the use of "low temperature" and 1007 relative humidity in investigations
of the eardrum. The effect of temperature is probably small: Viidik (1973)
concluded from the literature that the mechanical properties of collagen
tissues do not change much between room temperature and body-core temper-
ature although there may well be some small, possibly significant, effects;

he did not mention the effects of low temperatures. Humidity probably is
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more important, but Galante (1967) found that 657 relative humidity at
21 C is sufficient to prevent significant changes in certain
mechanical properties of collagen tissue for about 10 minutes. Kirikae
(1960) reported that after 10 minutes of drying (at an unspecified rela-
tive humidity) the stiffness of the eardrum more than doubled.

In this connection one should note that the eardrum normally
functions near body-core temperature, with eardrum temperature displaying
a sensitivity of about 5% to ambient temperature (Baker et al., 1972).
The relative humidity, at least on the medial face of the eardrum, is
normally 100Z.

3.4.5 Comparison to collagen. If one uses an effective thickness

equal to that of the combined radial and circular layers (33 ym in Lim,
1970, Fig. 4), instead of the total drum thickness, one should obtain a
value for Young's modulus corresponding to the fibres themselves (assuming
that they dominate the eardrum's mechanical properties). On this basis I
have calculated a modulus of 7 x 108 dyn cm_2 from Békésy's data. Using
the thickness of either the radial or circular layer alone would raise

the value further, as would the use of Kirikae's data. It is interesting
to compare this elasticity to values measured for other collagenous
tissues., Haut & Little (1969) found a stiffness of 10 to 20 x 108 dyn cm_2
for an "almost entirely collagenous" ligament when the strain was high
enough that the fibres were being stretched rather than just re-oriented.
Under similar conditiohs, Grahame (1970) found a stiffness of 108 to

lO9 dyn c:m_2 for human skin in vivo(with considerable individual variation
as well as dependence on age and sex). These figures are quite similar to
the values measured for the eardrum. Even though the fibres of the ear-
drum may not be collagen, or at least not ordinary collagen (as discussed
in Section 2.3.5 above), their mechanical properties appear to be similar

to those of collagen.
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(For the purposes of comparison, I should like to mention the

Young's moduli of the following materials:

6 x 106 dyn cm-'2 for elastic fibres (Carton et al., 1962);

107 " " smoked rubber (Kirikae, 1960);
5 x 108 " " yulcanized rubber (Kirikae, 1960);
8 x 1000 v " pine wood (BEkésy, 1949);
and 2 x 1012 " " steel.)

3.4.6 Conclusion. For the shell model présented below I have
chosen B&késy's value of 2 x 108 dyn cm-2 for the Young's modulus of
the pars tensa. .I have used the same value for the cat and guilnea pig
since there are no experimental data available to indicate whether
they are different in this respect from the human.

The pars flaccida has been described as very yielding, composed of
elastic fibres and irregularly arranged collagen fibres. Consequently I
have assigned it a Young's modulus of 106 dyn cm_z, which is typical of
elastic fibres (Carton et al., 1962, for example). This value is so low
that this part of the model has little effect on the over-all behaviour.

For the manubrium in the shell models I have used an elastic modulus
of 1011 dyn cm_z, which is typical of compact bone (Vayo, 1971, for example).
It is so high that the manubrium behaves essentially as a rigid body.

The Young's modulus is not a relevant parameter for the membrane

model.

3.5 Poisson's Ratio

Poisson's ratio is the ratio of transverse to axial strain when a
material is submitted to uni-axial stress. It has never been measured
for the eardrum. For common materials it ranges from about 0.3 for

isotropic crystalline solids, to 0.5 for rubberlike materials (Snowdon,
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1968). TFor a material composed of parallel fibres with no lateral
interaction among the fibres, Poisson's ratio would be zero for a stress
“applied in the direction of the fibres.

Wilkes et al. (1973) reported that the passive transverse strain in
human skin is essentially constant once the skin is stretched far enough
that the collagen fibres are all aligned, which corresponds to the con-
dition in the eardrum. Taken at face value, this would imply a Poisson's
ratio of zero. However, once the skin is stretched that far even the
axial strain increases only slowly with increasing stress. Thus, even if
the Poisson's ratio were non-zero the transverse strain would be small and
difficult to measure.

_ Since there are no experimental data to decide the issue, I have
adopted a value of 0.3 for the Poisson's ratio in the shell model, as a
compromise. It will be shown below (Section 12.6) that the behaviour of
the model is not very'sensitive to the value of Poisson's ratio in the

range of 0 to 0.5.

3.6 Tension

The only attempts that have been made to evaluate the degree of
tension in the eardrum are those of Bé&késy (1949) and Kirikae (1960).
Békésy cut out U-shaped flaps in the eardrum. In the calf and sheep
the flaps shrank and the cut-out hole expanded, which he interpreted
as evidence of tension. The shrinkage and expansion occurred very
slowly (over about 10 seconds), which B&késy thought was due to a large
viscosity in the drum; it might also indicate that the dimensional changes
were a result of tissue distortion along the cut edges, rather than tension
release. In any case, the flaps apparently did not shrink in the human and
guinea-pig drums, since he stated that they were not under tension.

Kirikae investigated the tension by cutting slits about 0.5 mm long
at various positions and orientations on human cadaver eardrums; both

with and without removing the epidermal layer. The only slits that became
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enlarged (to about 0.1 mm wide), suggesting tension, were those cut
perpendicular to the radial fibres with the epidermis removed. Kirikae
interpreted these results as merely confirming Békésy's finding that the
eardrum's properties are uniform and isotropic. If the spreading of the
slit really indicates tension, however, then Kirikae's observations indi-
cate that the radial fibres are under more tension than the circular ones,
and that the epidermis is able to prevent the radial fibres from shrinking
when their tension is released.

It isvuncertain that tests such as the above are sensitive enough to
detect tension in the eardrum. If one assumes that the resting tension in
the eardrum is comparable to the tension that can be developed by the ten-
sor tympani, then one can calculate that the amount of radial-fibre stretch
to be released by a slit is on thé order of 25 um (see Appendix 1). For a
short slit the release would be less because of the restraints imposed by
neighbouring fibres. An enlargement of a slit or flap by 25 um would be
difficult to detect, and might indeed be caused by local structural damage
in the act of cutting. '

The fact that B&késy's and Kirikae's experiments were done on cadaver
ears obviously means that they could not detect any component of eardrum
tension due to tonus in the tensor tympani. Also, any tension maintained
passively by the ossicular ligaments might be sensitive to post-mortem
tissue changes. ‘

Helmholtz (1869) believed that the curvature of the eardrum was
maintained by a tension working against the circular fibres. That the
curvature cannot all be explained as due to resting tension is indicated
by the observation that a completely detached human eardrum,.after being
"rolled up, ... unfolds itself rapidly under water, and displays its
exact contours" (Politzer, 1889, p. 76).

In the shell model below I have assumed thatthere is no resting
tension in the eardrum. In the plane-membrane model, of course, it is the
tension that subpliesthe effective stiffness of the membrane, but this

tension is not necessarily correlated to any real physical property of the
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eardrum. The values of tension used will be chosen by comparing the

model's behaviour with experimental data.

3.7 Internal Damping

No-one has ever attempted to measure the internal resistance of
the eardrum. 1In fact, very little attention has been paid to vibration
damping in any collagenous tissue. Witnauer & Palm (1961) estimated the
internal resistance of leather from the width of the resonance in their
measurement of the dynamic modulus of elasticity. The ratio of the modu-
lus of elasticity to the internal resistance was found to be about
103 sec—1 at their observed resonance frequency of 15 to 20 Hz. (Note
that they report the "dynamic bulk modulus" in "dyn/cm-z", and the "internal
bulk resistance" in "dyn/sec/cm-z". They use the slash, "/", simply as a
separator, and not to indicate division.) '

The shell model presented below is applicable only for static dis-
placements, so damping is not relevant. In the membrane model I shall
choose values of damping that best fit the experimental data available.

For convenience I assume that the ratio of elasticity (represented by

the tension, in units of dyn cm_l) to resistance (dyn sec cm_l) is

constant over the frequency range of interest. It will be seen (Chapter 10)
that a resistance is chosen which is considerably less than would be indi-

3 sec—1 indicated above; this is

cated by the low-frequency ratio of 10
consistent with some very indirect evidence that the ground substance in
collagenous tissue may be thixotropic, that is, its viscosity may decrease

with increasing shear rate or frequency (Wilkes et al., 1973).
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3.8 Density

Kojo (1954) reported an average total weight of 14 mg for the human
eardrum. From his area measurements he derived an overall area density
of 25 mg cm-z. There do not appear to be any more detailed data in his
paper (which is in Japanese), but Kirikae (1960, p. 53)
said that Kojo had found that "the central and peripheral parts of the
drum are larger in their thickness and surface density" than the inter-
mediate part. This implies a more-or-less constant volume density. Using
my estimate of drumlvolume (Section 2.2.5), one can estimate the volume
density to be about 3 g cm_3. (From this one can work back to calculate
area densities for the various parts of the drum; the area density,
rather than the volume density and thickness separately, is required for
the membrane model described below.)

This density of 3 g cm_3 may be compared with the demsity of light,
cellular tissue which is mostly water, namely 1 g cm_3; with that for dry
collagen tissue, namely 1.4 g cm—3 (Harkness, 1961); and with that for
compact bone, namely 2 g cm_3 (used by Vayo, 1971, for example). Harkness
(1961) gave a typical value of 1.2 g cm_3 for undehydrated collagen. My
estimate would appear to be too high, indicating either that Kojo's thick~
ness measurements were too small, or that my estimate of drum volume from
these measurements was inaccurate. (It seems unlikely that his weight
measurement could have been so excessively large as to explain the
discrepancy, unless he included the weight of the manubrium without so
stating.) Although it is possible that the eardrum contains unusually
dense collagenous tissue, it seems unlikely that its density, especially
combined with the non-fibrous layers, could be as high as 3 g cm_3.

One can suggest that the epidermal and mucosal layers are probably

less dense than the lamina propria, and that within the latter the sub-

epidermal and submucosal connective-tissue layers may be less dense than
the fibrous layers. However, even if one could estimate the volume
densities of the different types of tissue, there are no quantitative

data available concerning thickness variations of the individual layers,
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so it would be difficult to estimate variations of area densities.
Assuming, for lack of anything better, that the volume density is ?
the same in other species as it is in mén, then the area densities for
use in the cat and guinea-pig membrane models would be smaller than for
the human one because the drums are thinner (30-50 ym for cat, about 10um
for guinea pig, according to Lim, 68a). |
Because the shell model considers only static conditions, the ear-
drum mass is irrelevant there. For the cat membrane model I have used a
surface density of 5 mg cm-z, which corresponds to a volume density of
something over 1 gm cm_3, with a thickness of about 40 ﬂm. For the guinea

pig, with a thickness of 10 um, I have used a surface density of 1 mg cmfz.



CHAPTER 4

PROPERTIES OF STRUCTURES SURROUNDING THE EARDRUM

4.1 Introduction

This chapter will discuss the mechanical properties of structures
around the eardrum, and the nature of the eardrum's coupling to them.
Sections 4.2 and 4.3 concern the annular ligament and the manubrium,
respectively. The main interest there is how the eardrum is attached
to them. Sections 4.4 and 4.5 discuss the ossicular chain, which in
the models exerts its effect on the eardrum through reactive and resis-
tive forces acting on the manubrium. Finally, Section 4.6 discusses
the middle-ear cavities.

As in the previous chapter, each section concludes with a state-
ment of the parameter values adopted for the membrane and shell eardrum

models.

4.2 Annular Ligament

The radial fibres of the eardrum, aﬁd some of the non-radial onmnes,
extend into the annular ligament around the periphery of the pars tensa.
This ligament is a fibrous thickening firmly attached to the bony tympanic
ring, except superiorly where it separates the pars tensa from the pars
flaccida. Even there it is stiff enough that one may consider it to be a
rigid support for the eardrum.

The coupling between the eardrum and the annular ligament defines the
peripheral boundary conditions for the system of partial differential
equations describing the eardrum. For the purposes of the membrane model,
all that one need specify is that the displacements of the eardrum are

zero at the boundary. For the shell model, however, one needs to know not
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only if the displacements are zero, but also whether the first derivatives
of the displacements (slopes, or rotations) are zero at the boundary. If
the derivatives are forced to be zero, the boundary is said to be "fully
clamped". 1If they are unconstrained, the boundary is "simply supported".
The two conditions are illustrated schematically in Fig. 4.1.

From drawings showing the insertion of the eardrum into the annular
ligament (see, for example, Politzer, 1889, Fig. 135; Ruttin, 1921; and
Filogamo, 1943, Fig. 16) one gets the impression that the boundary of the
eardrum is fully clamped to the annular ligament and thence to the bony
ring. The fact that there are elastic fibres in the ligament, and in the
drum itself near the ligament, might however provide enough flexibility
that the boundary should be considered to be simply supported.

In the shell model below I have chosen to treat the boundary as
fully clamped. In Section 12.11 I show that making the boundary simply
supported instead does not change the drum's overall behaviour very much.

(Gran (1968) said that B&késy had taken the boundary of the eardrum
to be fully clamped, based on the fact that Békésy used the formulae for
clamped beams when calculating eardrum stiffness (as discussed in Section
3.4.2 above). 1In fact, however, that assumption_of fully clamped beams
was independent of the natuie of the drum's boundary conditions. In the
case of the human experiment,-the flap concerned was not supported at fhe
periphery of the drum (or, at least, Békésy did not say it was). In the
calf experiment, the rod was effectively fully clamped only because of

the particular geometry of B&késy's test, as illustrated in Fig. 3.1.

4.3 Manubrium

The manubrium behaves as a rigid rod, at least by comparison with the
eardrum. It is much stiffer than the latter both because it is bone and
because it is much thicker. Khanna (1970) demonstrated that if does not
bend significantly when the eardrum vibrates. In the membrane model

below I assume that it is perfectly rigid, whereas in the shell model I
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\\\\\

Fully Clamped

Simply Supported

Fig. 4.1. Schematic representation of two types of boundary conditions
for plates. For a fully clamped plate, all of the displacements and slopes
are constrained at the boundary. For a simply supported plate, on the other
hand, only the displacements are constrained.
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just assume it to be very stiff. The reasons for this slightly different
treatment, and its implications, are discussed in Section 8.7.

As for the question of whether the eardrum is simply supported on or
fully clamped to the manubrium, much the same considerations apply as in
the preceding section. In the shell model I have assumed it to be fully
clamped.

As noted in Section 2.3.5 above, the fibres of the eardrum are not
directly inserted into the middle third of the manubrium, at least in the
human. Tonndorf & Khanna (1972) noted that the drum and manubrium did not
seem to be so tightly coupled in this region, élthough the effect was quite
small. This condition has not been included in either of the models ‘

presented here.

4.4 Ossicular—Chain Stiffness and Damping

4.4.1 1Introduction. As has been the practice in earlier models of
the guinea-pig middle ear (Zwislocki, 1963; Funnell, 1972; Nuttall, 1972),

I have lumped the mechanical properties of the ossicular chain (including

the cochlear load) into three lumped elements: a spring, a dashpot (damper)
and a mass. (This procedure was also followed by Peake & Guinan (1967) for
the cat middle ear except that they also took into account a small compli-
ance for the incudo-malleolar joint.) In this section I shall discuss the
values to be given to the spring and dashpot elements for the guinea-pig,
cat and human models. Note that the spring constant is used in both the
membrane and shell models. The dashpot enters into only the membrane model,

since the shell model does not consider dynamic effects.

4.4,2 Stiffness. There are no data available which provide an

estimate for the stiffness of the ossicular chain separate from that of

the eardrum. The middle-ear circuit models mentioned above do use parameter

values for this quantity, but they are based strictly on empirical curve-

fitting with models whose eardrum representations are very crude.
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Consequently I have made an order-of-magnitude estimate of the ossicular

~ stiffness by considering the suspensory ligament of the guinea-pig incus.
For the ﬁurposes of the estimate I have modelled the ligament as a cylinder
clamped to the incus at one end and to the cavity wall at the other end

(see Fig. 4.2). If the central axis of the cylinder is taken to be in line
with the axis of rotation of.the ossicles, then the angular stiffness of the
ligament is given (Seely & Smith, 1956, equatidn 62) by

4
angular stiffness = %— = GzJ — gzﬂi ,

where = torque {(dyn cm),

T
8 = angle of twist (rad),
G = shear modulus (dyn cm—z),
2 = length (cm),

= polar moment of inertia of area (cma),

and d = diameter (cm).

Using values of 0.1 em for d and %, and 0.77 x 108 dyn cm_2 for G
(corresponding to a Young's modulus of 2 x 108 dyn cm—z, as used for the
eardrum, and a Poisson's ratio of 0.3) gives an angular stiffness of 7500
dyn cm. Taking a lever arm of 0.3 cm (for a point about half way down the
manubrium) gives a linear stiffness of 8 x 104 dyn cm—l. With a cosine
correction term for the inward-pointing angle of the manubrium, this be-
comes about 105 dyn cm-l. It might be argued that this estimate will be
too high since the ligament would not be able to use its fibres' stiffness
fully when operating in torsion, but Fumagalli (1949) has reported a spiral
fibre arrangement in the incudal ligament (see Fig. 4.3) that would tend to
increase the effective stiffness. In addition, this stiffness estimate
must be increased to account for any departure of the axis of rotation

from the centre of the cylinder, as well as for the other suspensory
structures of the ossicular chain (especially the annular ligament of the

stapes).
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eylindrical ligament

Fig. 4.2. A simplified model of the guinea-pig posterior incudal
ligament. The malleus and incus are considered to be fixed to the wall of
the tympanic cavity by a right-cylindrical ligament.
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Fig. 4.3. Fibre structure of the incudal ligament. Parts g and b
represent the lateral incudal ligaments of man and dog, respectively. (The
ligament in the cat is very similar to that of the dog.) In each case the
wall of the tympanic cavity is on the left and the incus is on the right,
as in Fig. 4.2. The spiral arrangement of the collagenous fibres is obvious.
Part ¢ shows a cross-section through the guinea-pig tympanic wall, ligament
and incus. Although a regular spiral arrangement is not evident, neither is
the arrangement of fibres strictly radial. (After Fumagalli, 1949)
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For the eardrum models presented below, I have adopted 105 dyn cm_1
as the value of the ossicular stiffness for the guinea pilg. For the cat
and human models I have used a value three times as large, since the
ossicles and iigaments are larger in these species.

These values are very crude estimates, but they do provide orders of
magnitude for physiologically reasonable parameter values. It will be seen
that these estimates do in fact come reasonably close to matching observed
eardrum behaviour., It is not within the scope of this work to search for

better estimates.

4.4.3 Resistance. As was the case for the stiffness discussed above,
previous estimates for ossicular-chain damping, or resistance, have been
baséd on curve~fitting with models which Iincorporate rough empirical
approximations of the eardrum. Similarly, attempts to measure the degree
of damping of the middle ear (Frank, 1923; Békésy, 1933) have included the
effects of the air cavities and of the eardrum as well as of the ossicular
chain.

As a first approximation, I have adopted the same ratio of stiffness
to resistance as mentioned in Section 3.7 above for collagenous tissue,
namely, 103 sec—l.. In fact, the total resistance is likely to be higher
than this, in part because of viscous losses in the cochlea. For the
purposes of studying the vibration of the eardrum, however, this parameter

is not of primary importance.

4.5 Ossicular Moment of Inertia

4.5.1 Introduction. I have estimated moments of inertia for the

ossicles of the cat, guinea pig and human by modelling them as assemblages
of cylinders based on morphological data. For example, Fig. 4.4 shows the
model used for the human. The bodies of the malleus and incus are repre-

sented by two cylinders fixed end-to-end, and the long processes are
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incudomalleolar
~ body

long process of incus

o

N\

a
manubrium stapes

Fig. 4.4, Geometrically simplified model of the ossicular chain.

The malleus and incus are modelled by a combination of four right cyl-
inders. The stapes is represented by a point mass.
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represented by two long, narrow cylinders perpendicular to the body cylinders.
The densities are assumed to be uniform for convenience, in spite of evidence
to the contrary (Kirikae, 1960). The stapes is represented by a point mass
at the end of the long process of the incus; its shape does not matter since
it is assumed to move in a straight line (that is, piston-like motion)
parallel to the direction of the force applied to the eardrum. Its effect

is small compared to the inertia of the malleus and incus.

4.5.2 Human. Fig. 4.5a shows the dimensions of the model used for the
human ossicles. The dimensions are based on measurements by Fumagalli (1949);
I have estimated equivalent lengths for the cylinders by eye. The total
volume of the malleus—and-incus model is about 0.04 cm3. (Note that Wever
& Lawrence (1954, p. 417) quoted an ossicular volume of 0.5 to 0.8 cm3 from
Békésy (1936). 1In fact, Bék&sy was reporting the volume of that part of the
middle-ear cavities where the ossicles are located. Stuhlman (1943, p. 262)
reported that the ossicular volume was about 77 of the cavity volume, or
0.035 to 0.056 cm>.)
The combined mass of the malleus and incus has been taken as 55 mg,
which is approximately the value given in Wever & Lawrence (1954); it corres-
ponds to a density of about 1.4 gm cm—3. The stapedial mass is taken as 3 mg,
based on the same source.
Fig. 4.5b shows the calculated ossicular moment of inertia as a function
of the assumed position of the axis of rotation. The minimum moment of inertia
is 2.1 mg cmz, and it ranges up to about 3 mg cm2 for likely positions of the
axis of rotation. By comparisoﬁ, Frank (1923, p. 63) measured (rather indirectly)
a value of 2.5 mg cmz. (Wever & Lawrence (1954, p. 391) incorrectly quoted the
units as gm <:m_2 instead of gm cmz.) Frank's value is equivalent to the inductance
of 40 mH used by Zwislocki (1962) in his circuit model, based on a lever arm
of about 0.5 cm and an 'effective' eardrum area of 0.55 cmz.
The dotted curve in part b of the Figure is the moment of inertia recal-

culated with zero stapedial mass. The difference is not great.
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Fig. 4.5. Moment of inertia of human ossicles. Part aq shows the
dimensions (in mm) of the model used. Part b shows the calculated ossicular
moment of inertia as a function of the position of the axis of rotation, which
is taken to be parallel to the axes of the cylinders representing the incudo-
malleolar bodies. A given point on the vertical axis in b corresponds to an
axis position at the same level in a. For example, point A gives the moment
of inertia for the particular axis position indicated. The solid curve was
calculated with the stapedial mass included, the dashed curve without it.
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4.5.3 Cat. Fig. 4.6a shows the model dimensions used for the cat.
Since T could not find a published figure for the mass of the ossicles, I
estimated their volumes (6.3 mm3) and calculated a mass based on a density
of 1.8 gm cm_3: the result was a combined incudo-malleolar mass of 11 mg.
I adopted a mass of 1 mg for the stapes (scaled down from the human value).

Part b of the Figure shows the calculated moment of inertia in the
same format as Figure 4.5b. The minimum is 0.12 mg cm2, and it does not
become much larger for reasonable axis locations. To allow for the added
masses of ligaments and muscles, and for cochlear loading, I have used a
value of 0.2 mg cmz, or 2 x 1(-)"4 dyn cm secz, in the membrane model. The
shell model applies only to static displacements and thus does not use this

parameter.

4.5.4 Guinea Pig. TFig. 4.7a shows the dimensions of the model for
the guinea pig. The masses used were 8 mg for the malleus and incus, and
0.5 mg for the stapes (Mundie, 1971). This results in a demsity of 1.8 gm
cm-3.

Again, part b of the Figure shows the calculated moment of inertia.
The minimum is at 0.06 mg cmz. As for the cat, I have added to this some-
what, using a value of 0.1 mg cm2 in the membrane model.

Note that if one assumes a lever arm of 0.5 cm, corresponding approxi-
mately to the length of the manubrium, and an eardrum area of 0.4 cm2, then
the augmented estimate of 0.1 mg cm2 corresponds to an acoustical inertance
of E%ZI = 2.5 mg cm_4. This is equivalent to an inductance of 2.5 mH in
terms of the circuit model of Zwislocki (1963). By comparison, Zwislocki
used values of 30 to 40 mH in the model. The much smaller value used here
is consistent with the demonstration by Johnstone & Taylor (1971) that
ossicular mass appears to have little effect on middle-ear transmission

within the audio-frequency range.
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Fig. 4.6. Moment of inertia of cat ossicles. The format is the same
as that of Fig. 4.5.
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Fig. 4.7. Moment of inertia of guinea-pig ossicles. The format is the

same as that of Fig. 4.5.
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4.6 Middle-Ear Air Cavities

The relationships of the middle-ear and external-ear cavities to the
eardrum and ossicular chain are shown schematically in Fig. 4.8a. The effects
of these cavities are included in the model as shown by the equivalent elec-
trical circuit in Fig. 4.8b. The large block represents the eardrum model
itself, with associated boundary conditions and oséicular forces. The main
middle-ear cavity is represented by the capacitor Cbl’ which effectively
applies a uniform pressure to the medial face of the eardrum. This pressure
combines with the applied sound pressure to form the net force acting on the
drum. The capacitor Cb2 represents a secondary cavity, the epitympanic in
the guinea pig and the entotympanic in the cat. This secondary cavity is
connected with the primary one by a narrow opening whose acoustical resis-
tance and inertance are given by E and L , respectively. This arrangement
is the one first used by Zwislocki (1963) in his guinea-pig middle-ear model,
based on observations by Mundie (1962).

The capacitor Ce represents part of ;he volume of the external ear canal.
This is immaterial in calculating eardrum displacements but has some effect on
the calculations of acoustical input impedance of the middle ear (see Section
8.10). It is included for the purposes of comparing the eardrum model to my
earlier guinea-pig impedance data (Funnell, 1972).

For the shell models, both guinea-pig and cat, I have not included the
effects of the air cavities. It is not necessary since for the guinea pig
the experimental data to which it is compared (Manley & Johnstone, 1974) were
measured with the bulla open; and for the cat the middle-ear cavities are
large enough that they have a negligible effect at the low frequencies to
which the model is applied (Peake & Guinan, 1967).

For the cat membrane model I have taken both R and L to be zero, and
have assumed the total cavity volume to be 2 cm3; this is equivalent to a
total capacitance (Cb1+0b2) of 1.4 ﬂF. ‘

However, these values are unimportant since, except at low frequencies,

I only compare the shapes of the vibration patterns with the experimental
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Fig. 4.8. Schematic representations of the effects of the air cavities
on the eardrum. Part a is a simplified diagram of the acoustical system. (The
incus, stapes and cochlea have been omitted for clarity. See Fig. 5.12 for a
more accurate representation of the guinea-pig middle ear.) Part b is an
equivalent electrical circuit, as explained in the text.
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results of Khanna and Tonndorf, not the actual displacements. Thenlow-
frequency displacements are little affected by the air cavities, as mentioned
above, and the shapes of the vibration patterns are combletely independent of
the air cavities (since the back pressure on the drum is assumed to be uni-
form). In any case, Khanna & Tonndorf (1972a)did not measure the cavity
volumes in their cats.

The volume represented by Ce in the cat membrane model has been taken
to be very small, so that it would have an insignificant effect on the calcu-
lated impedance. It is immaterial since I do not combare the impedance of the
cat model with experimental data.

The cavity parameters are more important for the guinea-pig membrane
model, since for it I calculate the input impedance as a function of frequency
for comparison with some exﬁerimental results. I have used the same parameter
values used in Funnell (1972) for a typical guinea pig. These values were
based on anatomical measurements and on measurements of the impedance of the
cavities themselves. The values are 0.12 uF, 0.02 uF, 200 ohm, 76 mi, and
0.03 yF for Cbl’ Cb2’ R, L and Ce respectively.

Note that the radiation impedance of the air surrounding the eardrum has
not been taken into account in the membrane model. This has generally been
neglected in middle-ear models, although Michelsen (1971) did attempt to

account for it in his analysis of the locust ear.

54



55

CHAPTER 5

EXPERIMENTAL OBSERVATIONS OF EARDRUM VIBRATIONS

5.1 Introduction

This chapter is a review of previously published observations of
eardrum vibration patterns. Most of these observations have been at low
frequencies, that is, zero to 1 or 2 kHz: the eardrum's mode and ampli-
tude of vibration are essentially constant over this frequency range.
Section 5.2 presents an approximately chronological discussion of such
low-frequency observations. Section 5.3 discusses higher-frequency
observations, which essentiélly consist of the recent work of Khanna &
Tonndorf.

There are many ways of‘monitoring middle-ear function which do
not provide explicit information about the vibration pattern of the ear-
drum. In particular, a great many measurements have been made of such
things as ossicular displacements, cochlear potentials and middle-ear
acoustical input impedance. The last, although it does not give a direct
description of the drum's vibration pattern, does depend more on the
behaviour of the drum and less on the rest of the middle ear than do
ossicular displacements and cochlear potentials. For this reason it will
be discussed in Section 5.4.

This chapter will be concerned only with the normal behaviour of
the eardrum. Many reports have been published on the effects of changes
in the ossicular chain (Elpern et al., 1965), in the tympanic cavities
(Onchi, 1961; Mundie, 1962; Webster, 1962), in the static pressure on the
drum (Mundie, 1962; Hoeft, 1964), and in the middle-ear muscles (Borg,
1972); and on the effects of eardrum excisions and perforations, whether
covered, healed or left openA(Payne & Githler, 1951; McArdle & Tonndorf,
1968; Tonndorf et al., 1971, 1972). However, only the holographic

‘experiments of Tomndorf et al. produced measurements of actual vibration
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patterns, and even these experiments do not yet provide enough information
to permit quantitative modelling. I shall therefore not consider patho- -
logical behaviour of the eardrum in this thesis.

5.2 Low-Frequency Vibration Pattern

5.2.1 Introduction. The earliest observations of eardrum vibrations

were direct visual ones, generally under stroboscopic illumination. These
experiments are discussed in Section 5.2.2. In 1900, the use of a.mechanical
probe was reported; this is discussed in Section 5.2.3. Later, in an attempt
to magnify theAsmall motions of the eardrum, the reflection of light from
small mirrors attached to the drum was observed, as described in Section 5.2.4.

Section 5.2.5 deals with the famous measurements of B&késy (1941) using
a capacitive probe. The next section then discusses some further visual (or
photographic) observations.

The first technique which produced detailed vibration patterns was
‘reported by Khanna (1970). Section 5.2.7 treats those observations and subse-
quent ones by Khanna and Tonndorf. Section 5.2.8 discusses the measurements
by Manley & Johnstone (1974) using the M6ssbauer technique.

Section 5.2.9 consists of a discussion of this body of experimental
results, and in particular considers some possible reasons for the discrepancy
between Békésy's data and the rest. Finally, Section 5.2.10 concludes with a
statement of the eardrum vibration characteristics used for comparison with

the models in Chapters 10 and 12.

5.2.2 Visual observations I. Kessel (1874) reported direct visual

observations of eardrum displacements due to static pressures in human
cadaver ears, using a simple magnifying lens. With respect to the pars
tensa, he found that under a positive pressure in the ear camal the eardrum
moved inwards and the cufvature of the radial fibres flattened; under a

negative pressure the curvature increased. The greatest displacements were
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seen in the pcsterior segment of the drum.

Kessel also used a stroboscope to observe vibrations at 256 Hz
and 512 Hz, again using a magnifying lens. Again the displacements were
larger posteriorly, although in this case he said that the greatest dis-
placements occurred in the central region of the drum where there are no
circular fibres.

The pressure used in these experiments was 3 to 4 inches of water.
(Note that these were not English inches: there were a number of different
definitions of the unit "Zoll" in use in Germany at the time, but they were
all in the range of about 2.4 to 3.2 cm (Brockhaus, 1966, p. 386).) This is
equivalent to about 155 dB SPL. Mach & Kessel (1874) mentioned taking some
measurements at a pressure about 6 dB less.

Lucae (1901) aléo observed eardrum vibrations visually under strobo-
scopic illumination. The stimuli were air-pressure variations with
unspecified amplitudes and poorly defined waveforms (see Figures in Lucae,
1900b), with repetition rates up to about 35 per second. He did not present
quantitative results, but said that the greatest displacements appeared to
occur at the manubrium and in the posterior superior quadrant. These
observations seem to be at variance with his statement in another paper
(Lucae, 1900a) that the motions of the manubrium are smaller than those
of the drum itself, in agreement with Helmholtz' principles, but he did

not elaborate. Note that Lucae's observations were made on waking patients.

5.2.3 Mechanical probe. Mader (1900) used a mechano-electrical

probe to study eardrum vibration. The probe consisted of a small rod
attached to the movable plate of a variable~resistance microphone. The
amplitude of the microphone output was estimated on the basis of the
threshold of detectability in a telephone ear-piece in another room. The
pressure exerted on the eardrum was adjusted to be the same in all measure-
ments. In response to tones of 240 Hz and 600 Hz, as well as to a pulse of
unspecified duration and shape, Mader found the greatest amplitude to be in
the posterior inferior quadrant of the human cadaver eardrum (see Fig. 5.1).

He also used the probe at three points in a line extending downwards from
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240 Hz 600 Hz
Pure-tone stimulus

Pulse stimulus

Fig. 5.1. Relative probe outputs found by Mader (1900). The values here
have been obtained by normalizing with respect to the value in the posterior
inferior quadrant. In addition, I have taken the reciprocals of the values given
by Mader for the pulse stimulus, since for that series of experiments his measured
variable was inversely proportional to the amplitude of the microphome output. As
noted in the text, these numbers are not necessarily directly related to eardrum
displacements because of differences in coupling to the probe.
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the tip of the manubrium. The probe output was greatest from the inner
third and least from the outer third. However, the output from the middle
third contained a distortion which he interpreted as indicating large dis-
placements there that were poorly coupled to the probe. Thus, the con-
clusion is that the greatest drum displacements occur in the posterior
inferior quadrant and that they are smaller near either the manubrium or
the periphery than they are part way between.

From Mader's published data one cannot calculate either the sound

pressures that he used, or the impedance with which his probe loaded the

eardrum.

5.2.4 Mirrors. As early as 1874, Kessel suggested observing ear-
drum and ossicular displacements by fixing tiny mirrors to the surface under
question, and using the angle of reflection of a beam of light as a measure
of the motion of the mirror. Kohler (1910) used this method for measuring
malleolar displacements but did not investigate the vibration pattern of the
drum itself. Wada (1924) used the method on the eardrum, but published
vibration-pattern data only for non-mammalian species.

Dahmann (1929, 1930) used mirrors on human cadaver eardrums, with the
stimulus being a static pressure change. Fig. 5.2a shows his only published
data. The black marks superimposed on the sketcﬁ of an eardrum represent
the loci of the reflected beams of light from the nine mirrors positioned
approximately where the numbers are written. The length of each mark is a
measure of the angular deflection of that mirror, that is, it is a measure
of the slope of the displacement function at thét point.

In interpreting these patterns one must pay attention to the sign of

the displacement slope. For example, the mirrors 7, 6, 2 and 3 are all

- rotating from side to side with little vertical rotation, but from the

illustration one cannot tell whether these rotations are in or out of

phase with one another, and Dahmann did not specify this in his discussion.
The lines labelled b to e in the Figure are my calculations of the eardrum
displacement function in a horizontal line through the tip of the manubrium,

including mirrors 7, 6, 1, 2 and 3. (My method is presented in Appendix 2.)
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Fig. 5.2. Results of Dahmann's experiment. Part g is from
Dahmann (1930). Parts b to e are horizontal displacement profiles
through the umbo. See text for explanation.
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For all four lines I assumed that the slope was positive (that is,
displacement amplitude increases toward the right) at mirror 7 and nega-
tive at mirror 3, but each line represents a different combination of

slope signs for mirrors 6 and 2. Evidently lines b and d are not realistic,
since part of the right half of the drum is displaced in the wrong direction.
Lines ¢ and e show qualitatively similar shapes for the right half, but the
left half presents a maximum between the periphery and the manubrium in line
e and not in ¢ . Wever & Lawrence (1954, pp. 83-85) interpreted Dahmann's
results as meaning that neither side exhibited such a maximum. Dahmann
himself however (1930, pp. 350-351) interpreted them as meaning that the
middle partsvhad larger displacements than the manubrium as in line e .

The pressures used in these experiments were about 60 mmHg in each
direction (Dahmann, 1929), equivalent to about 170 dB SPL. Wever & Lawrence
(1954, p. 86) pointed out that this.pressure is too high to be representative
of normal operation of the eardrum, and suggested that it is "a hundred times
or more what the ear can safely withstand." They were presumably thinking of
the safety of the inner ear, which can sustain immediate damage at intensities
in the range of150 to 160 dB SPL (Beranek, 1954, p. 397). It would be more
appropriate to compare Dahmann's pressures with those that can damage the
eardrum: Kobrak (1959, p. 7) gives a drum-bursting pressure of less than
twice Dahmann's pressure. Zalewski (1906, cited by Sudderth, 1974) found
that static pressures of 5.4 to 43.2 psi, equivalent to 182 to 200 dB SPL,
caused rupture of eardrums of human cadavers. White (1967, cited by
Sudderth, 1974) found ruptures occurring in half of his dogs and goats at
shock overpressures of about 190 dB SPL. Thus, Dahmann's pressures were
definitely less that what would cause drum rupture. However, the safety
margin was perhaps as small as a factor of two, and it seems safe to agree
with Wever & Lawrence that his observations are of little value for describing

normal eardrum vibrations.
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5.2.5 Capacitive probe. The next observations of drum vibration

patterns were those of B&késy (1941), who used a capacitive probe on
human cadavers. In his case also, only one illustration of his results
was published. 1In Figure 5.3a I have reproduced his drawing showing the
vibration pattern that occurs below 2 kHz. 1In Fig. 5.3b I have redrawn
it, removing the contour labelled I so that the remaining contour lines
represent equal increments of amplitude. As shown in Fig. 5.3c, he found
that the central portion of the drum underwent almost no bending in the
direction perpendicular to the manubrium. = However, as shown in Fig. 5.3d,
a section along the direction of the manubrium indicates comsiderable
bending of the drum inferior to the manubrial'tip.’ This is not consistent
with the usual interpretation of his findings, which is, in his words,
that "the whole eardrum except the extreme periphery vibrates as a stiff
surface along with the manubrium". My interpretation of his equal-amplitude
curves is that the paft of the drum inferior to the umbo is stiff in one
direction only, and bends quite a bit in the orthogonal direction.

This inconsistency is perhaps caused by inaccuracy in his Figure
showing iso-amplitude curves. It is noteworthy that the flat portions of
the contours are not Quite parallel to the rotation axis as drawn, which
is most unexpected. Unfortunately, no actual data were given which would
permit clarification of his findings.

It is also impossible to decide with certainty whether his obser-
vations were made at intensities within the normal operating range of the
ear, since he published neither the sound pressures used nor the actual
displacements measured. However, he indicated that his probe could
measure down to about 10 mm. In his Fig. 5-5 (1941) the iso-amplitude
contour lines cover a range of 1 to 15 (arbitrary units) so one can guess
that the maximum displacement was at least 150 nm. By comparison, Tonndorf
& Khanna (1970) found a maximal drum displacement of 800 nm at 121 dB SPL
(at 525 Hz, in human cadaver). On this basis, one can conclude that Békésy's
measurements could have been performed at intensities as low as about 110
dB SPL, which is starting to be uncomfortably loud, but is still within

the linear range of the middle ear.
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Aris of .
p Manubrium of
rotation the molleus
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Fig. 5.3. Vibration pattern measured by Békésy in human cadaver, at
frequencies below 2 kHz. Part g is from Békésy (1941). Part p has been redrawn
based on g. Part ¢ is a horizontal displacement profile through the umbo. Part
d is a vertical displacement profile through the manubrium; the interpolation
between contour lines is based on the assumptions that the displacement is zero
where Békésy indicates the axis of rotation to be, and that the manubrium is rigid.
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5.2.6 Visual observations II. Kobrak (1941) described the obser-

vation of the eardrums of human cadavers using high-speed cinematography,

and later (1943) discussed the use of stroboscopic illumination with both

cadavers and living subjects. In neither of these ﬁapers did he actually

give the results of his observations. Kirikae (1960) cited the 1941 paper
as having said that the amplitude of the intermediate part of the drum was
greater than that of the central and peripheral parts. In his ﬁuch later

book (1959), Kobrak said that "the fold described by Béké&sy, around which

the drum membrane vibrates, was observed" (p. 40).

Kobrak (1959, p. 40) mentioned a sound intensity of about 110 dB at
60 Hz, which was "not too unpleasant”" and could easily be tolerated by the
waking subject. It 1is not clear whether his intensity measurement was
dB SPL, dB hearing level, or dB loudness level. 110 dB HL at 60 Hz is
equivalent to about 160 dB SPL; 110 dB loudness level (that is, 110 phons)
at 60 Hz is equivalent to 110 - 130 dB SPL (Beranek, 1954, Fig. 13.9 and
13.10).

Perlman (1945) described results using the same stroboscopic method
as Kobrak. He reported that observations on cadavers indicate that the
amplitudes of vibration of the anterior and posterior parts are about the
same, although observations in the living ear (because of the difficulties
involved) seem to indicate much smaller amplitudes in the anterior part.
The greatest amplitude appeared to be "halfway between the umbo and the
postero-superior part of the annulus'", and the smallest amplitude was
seen on the manubrium. No quantitative results were given.

Owada (1959) ﬁublished sketches of his observations of the vibration
patterns of the eardrums of the cat and rabbit, observed under stroboscopic
illumination at frequencies of 500 to. 1000 Hz. His results are reproduced
in Fig. 5.4. In both species the greatest amplitudes are found midway
between the manubrium and the periphery, anteriorly and posteriorly as
well as inferiorly. (He attributed the differences between the two species
to differences in the arrangéments of the fibres of the drums.) The stimuli
were in the range of 100 to 120 phons, equivalent to 100 to 130 dB SPL
(see Beranek, 1954, Fig. 13.9 and 13.10). A '
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Cat

Rabbit

Fig. 5.4. Vibration patterns in cat and rabbit. The density of the

stippling indicates vibration amplitude.

(After Owada, 1959)
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Kirikae (1960) also used microscopy and microphotography under
stroboscopic illumination to observe the vibrations of human cadaver
eardrums. He used frequencies of 100 to 800 Hz, and loudnesses of 100
to 120 phons (100 to 140 dB SPL according to Beranek, 1954, Fig. 13.9
and 13.10). His observations are summarized in Fig. 5.5. Part a indicates
his conceptual division of the drum into central, intermediate and peri-
pheral parts. The largest displacements occur in the intérmediate part, as
shown in part b , with the displacements in the posterior superior quadrant
being larger than those in the other quadrants. Kirikae concurs with Békésy
in saying that "the central part vibrates as a rigid cone" (Kirikae, 1960,
P. 53), but according to the curve of Fig. 5.5b this rigid central part is
hardly wider than the manubrium itself.

Kirikae's published photograph showing the motion of the entire
malleus (1960, Fig. 53) indicates a medial-to-lateral translation as well
as a rotation. Kirikae does not comment on this, but it may well be a
result of the large displacements observed. Perlman (1945) mentioned a

"posteromedial displacement of the whole malleus handle'.

5.2.7 Holography. Khanna (1970) reported the first use of laser
holography to study eardrum vibrations. This is an interferometric tech-
nique which immediately produces complete iso-amplitude contour maps of a
vibrating surface, rather than requiring interpolation among point diéplace—
ment measurements. The absolute amplitudes corresponding to the various
contour lines are precisely defined in terms of the wavelength of the laser
light used, the smallest amplitude being 0.12 ym in Khanna's case. The con-
tour spacing is not quite uniform: it is expressed in terms of a Bessel
function, and is 0.121 ym between contours 0 and 1,0.157 pym between 1 and
2, and 0.158 ym from therern. Except for the most detailed quantitative
study, this nonuniformity need not be considered.

The contour lines (or dark fringes) produced by this technique are
not thin and sharp. They may be more or less broadened to indicate areas
of approximately equal displacement, and the contrast between them and the

light background decreases at higher amplitudes.
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central
N

intermediate

peripheral

Fig. 5.5. Vibration pattern of human eardrum. In part a
is shown an outline of the eardrum, indicating the division into
central, intermediate and peripheral zones. Part b indicates
vibration amplitudes in a horizontal section through the drum at
the level of the umbo. (After Kirikae, 1960)
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These observations were made at frequencies from about 400 to 6000 Hz.
The sound intensities were adjusted to provide good contour patterns, and
were as low as about 90 dB SPL in some cases.

Khanna (1970) presented results observed in cat cadaver ears. It was
later shown (Khanna & Tonndorf, 1972a) that the patterns are not significantly
different in live cats. A typical low-frequency pattern is shown in Fig. 5.6.
The disﬁlacements are greatest partway between the manubrium and the periphery,
and are greatest in the posterior segment of the drum.

The same technique was later used to investigate human cadaver ears
(Tonndorf & Khanna, 1972). A typical low-frequency pattern is shown in
Fig. 5.7. Again the displacements on the manubrium are smaller than those
- of the surrounding eardrum, and the largeét displacements occur in the

posterior segment.

5.2.8 M8ssbauer technique. Manley & Johnstone (1974) applied the

M8ssbauer technique to the study of the vibrations of the guinea-pig middle
ear. This technique involves placing a very small gamma-ray source on the
vibrating structure, and producés a measure of velocity which can then be
converted to displacement if the frequency of vibration is known. The sound
pressures used were in the range of 85 to 110 dB SPL.

Manley & Johnstone investigated eardrum vibrations by measuring dis-
placements at seven points on the drum. They plotted contour lines based on
interpolation of these data at three frequencies, as shown in Fig. 5.8. (The
positions of the seven measurement points are indicated in part a of the
Figure.) Here again, the manubrial displacements are smaller than those of
the surrounding eardrum surface. The greatest displacements occur in the

inferior region.

5.2.9 Discussion. The general picture resulting from the experiments
discussed above is that, at low frequencies, the displacements of the manu-
brium are less than those of the surrounding eardrum. In the human and cat
the largest displacements are found in the posterior half of the eardrum,

while in the guinea pig and rabbit (where the eardrums are very nearly
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Fig. 5.6.

Vibration pattern of cat eardrum.

(After Khanna, 1970)
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Fig. 5.7.

Vibration pattern of human eardrum.
Fig. 1 of Tonndorf & Khanna, 1972)

(Based on
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750 Hz

b U

1000 Hz

C \/

3000 Hz

Fig. 5.8. Vibration patterns of guinea-pig eardrum at three frequencies.
Based on Fig. 6 of Manley & Johnstone (1974), with contour lines added (@) and
removed (g, b and e¢) to make the contours uniformly spaced in amplitude and direct-
ly comparable between frequencies. The seven dots in part a denote the points
where actual displacement measurements were made.
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symmetrical) the largest displacements occur in the inferior region.

Békésy's observations are the only ones that do not agree with this
general picture. (Kirikae (1960, p. 53) cited Stuhlman (1937, 1943) as
having pointed out that "the central part vibrates as a rigid cone". 1In
fact, however, in the 1937 paper Stuhlman did not mention drum vibration
patterns at all, and in the 1943 book he just gave some theoretical specu-—
lations which in any case were not consistent with Békésy's ideas.) Even in
Békésy's results, the inferior region follows the pattern of having an
amplitude maximum part-way between the manubrium and the periphery. 1In the
anterior and posterior regions, howéver, he indicated that the drum displace-
ments were the same as or less than the manubrial ones.

As discussed by Tonndorf & Khanna (1972), it is unlikely that post-
mortem changes could account for'Békésy's findings; most other oBservations
on human eardrums have also been on cadavers. Nonlinearity also is probably
not responsible for Békésy's disagreement: as mentioned above, Békésy's
method was probably sensitive enough to permit the use of sound intensities
within the linear range of the eardrum. In any case, other workers using
very high intensities found vibration patterns similar to the recent low-
level omes.

Four other possible factors may be proposed. TFirst, Tonndorf, in the
discussion period after the presentation of a paper (Tonndorf & Khanna,
1971b), suggested that the discrepancy may be due to departures of the ear
canal and eardrum from the ideal environment for the use of a capacitive
Probe. The fact that both the canal walls and the drum itself have finite
electrical resistances might have a considerable effect on the probe's output,
es?ecially since the geometry of the system is so irregular.

Second, it is possible that the size of the tip of Békésy's probe was
too large to permit reliable determination of the details of the vibration
pattern. Békésy (1941, p. 3) mentioned an electrode diameter of 1 mm. The
same figure was given in a translation of the article (Békésy, 1960, p. 55),
but the translation also mentioned parenthetically a tip radius of 1 mm. In
Fig. 5.9, I have superimposed circles of these two sizes on a sketch of the

eardrum, to give an idea of the resolution obtainable. (Békésy found that
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Fig. 5.9. Relative size of B&késy's capacitive probe. Superimposed
on an outline of the human eardrum are two circles representing diameters
of 1 and 2 mm, as discussed in the text.
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the probe output was determined by an area of the vibrating surface
approximately equal to that of the probe.) Since Béké&sy gave no details
about how many points he measured, or where they were, it is difficult t?
decide whether his resolution was good enough to differentiate positively
between the type of pattern he proposed and that proposed by other workers.

Third, it is known that Békésy's measurements were done on cadaver?
obtained from a children's hospital (Tonndorf & Khanna, 1972, citing a ‘
personal communication from Békésy), and that he preferred to use the temporal
bones of newborns, at least for cochlear studies (Békésy, 1960, p. 20). ;In
the absence of any mention of the ages of the cadavers used for his eard}um
measurements, one can speculate that the drums may have been immature. It
is not known how much this might have affected his results, if at all. %ee
Section 2.4 for a discussion of the development of the human eardrum.

Fourth, it is conceivable that BEkésy's use of low (unspecified) ambient
temperatures, in an attempt to slow down post-mortem changes, could havé
affected the mechanical properties of the eardrum; as mentioned in Sectibn
3.4.4, the effects of low temperatures on collagenous tissues have not been

studied.

5.2.10 Conclusions. For the purposes of comparison with the models
in Chapters 10 and 12, the low-frequency patterns shown in Figures 5.6, 5.7 and
5.8 will be taken as representative of cat, human and guinea-pig eardrum
vibrations, respectively.

Apart from the general shapes of the contour lines, two numerical-
quantities that will be used to compare experimental énd model results are
(1) the amplitude of the maximal drum displacement, and (2) the ratio of
that displacement to the displacement of the tipiof the manubrium. The
former is a measure of the over-all displacement of the drum, and the
latter is a measure of the coupling of the drum to the ossicles and of the
degree of sound transmission to the middle ear. The actual values of these
properties will be discussed below in the appropriate sections of Chapters
10 and 12,
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5.3 " Higher-Frequency Vibration Patterns

Békésy (1941) stated that above 2400 Hz "the conical portion of the
eardrum loses its stiffness, and the manubrium in its motion lags behind
the motion of the adjacent portion of the membrane' (English translation
in Békésy, 1960, p. 102), but no further details were given. Fumagalli
(1949, p. 294) interpreted this as meaning that above 2400 Hz Békésy had
observed drum vibrations like those predicted by Helmholtz, that is,
vibrations with a smaller amplitude on the manubrium than on the adjacent
drum. _

The stroboscopic method of Khanna and Tonndorf provides detailed
vibration patterns up to 6 kHz. A series of such patterns observed in one
cat is shown in Fig. 5.10. The simple low-frequency vibrationvpattefn is
still present at 2.5 kHz, but above that it progressively breaks up as the
frequency increases, until by 4 or 5 kHz most of the surface of the drum is
only very poorly coupled to the manubrium. The details of the vibration
patterns above 3 kHz vary from animal to animal: Fig. 5.11 shows typical
examples of the differences between individuals at three frequené¢ies.
Tonndorf & Khanna (1972) observed a similar pattern break-up in human
cadaver ears, at about the same frequencies.

The point velocity measurements of Manley & Johnstone (1974) do not
provide complete vibration patterns, particularly if the patterns become
more complex. However, their observations on the guinea-pig eardrum indi-
cate that the basic low~frequency pattern may not be much changed until the

frequency is as high as 6 to 8 kHz.

5.4 Middle-Ear Acoustical Input Impedance

As mentioned above, the acoustical input impedance of the middle ear
depends more on the behaviour of the eardrum than on any other single factor.
Thus, it serves as an easy-to-measure indicator of eardrum function, although
of course it does not give the same detail as the holographic method; for

example. .
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Fig. 5.10. Measured vibration patterns of the cat eardrum at five
high frequencies. This Figure is a rearranged and heavily retouched version
of part of Fig. 7 in Khanna & Tonndorf (1972a).
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Fig. 5.11. Measured vibration patterns for two cats at each of three

frequencies, indicating typical variability between individuals.
heavily retouched version of Fig. 9 in Khanna & Tonndorf (1972a).

This 18 a
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In Chabter 10 below I shall compare the output of the guinea-pig
membrane model to some impedance measurements reported earlier (Funnell,
1972; Funnell & Laszlo, 1972). In this section I shall briefly review
the basis and results of these measurements.

The input impedance of the guinea-pig middle ear was measured by
presenting a sound to the eardrum through a high-impedance driver, and
measuring the resultant sound pressure with a high-impedance probe micro-
‘phone. The set-up is shown in Fig. 5.12., The driver and probe were both
half-inch condenser microphones with damped tubes attached. They were
fixed to the ear of the anaesthetized animal after most of‘the external
ear had been removed.

The high-impedance driver acts approximately as a constant-volume-
displacement source. The acoustical impedance is calculated simply by
converting the pre-calibrated volume displacement to a volume velocity,
and dividing it into the measured sound pressure. The frequency charac-
teristics of both the driver and the microphone probe tube are taken into
account. The measured impedance includes the effect of the small residual
volume of the external ear canal between the driver and the eardrum; this
can easily be corrected for if the volume is measured.

Fig. 10.5a shows a typical measured impedance curve of an intact
guinea-pig ear. This curve includes the effects of the middle-ear air
cavities. These effects can be isolated by measuring the input impedance

after complete removal of the eardrum.
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Fig. 5.12. Schematic drawing of the arrangement for measuring
acoustical input impedance. I is the tympanic cavity of the guinea-pig
middle ear, and 2 is the epitympanic cavity. 3 is a high-impedance
acoustic driver, and ¢ is a probe microphone.
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CHAPTER 6

THEORIES OF EARDRUM FUNCTION

6.1 Introduction

The main function of the middle ear is that of an impedance~matching
transformer. It transforms low-pressure, large-displacement acoustical
vibrations in air into high-pressure, small-displacement vibrations in the
cochlear liquid. The main contribution to this transformer action is made
by the ratio of the area of the eardrum to that of the oval window of the
cochlea: the air pressure acting on the large eardrum generates a large
force which is then concentrated onto the small oval window. A second
contribution to the transformer action is made by the ratio of the lever
arm of the malleus to that of the incus.

The actual values of the transformer ratios, or lever ratios, arising
from these two sources depend on the precise way in which the eardrum
functions. (In fact, a third lever mechanism was hypothesized by Helmholtz
which resulted entirely from the action of the eardrum.) There have been
four main models suggested for eardrum function: curved-membrane, hinged-
plate, plane-membrane, and plane-plate.

The curved-membrane hypotheéis was proposed by Helmholtz in an attempt

to account for the peculiar shape of the eardrum; it was also in accord with
the results of one of his own experiments. (These results have since turned
out to be erroneous.) Esser later extended the mathematical analysis of the
theory, but it fell into disrepute when Békésy's observations of the eardrum
vibration pattern did not agree with Helmholtz' prediction, and when Wevef

& Lawrence were unable to duplicate Helmholtz' experiment.

The hinged-plate model was put forward by Békésy simply as a description

of his experimental results, and dominated thinking about the eardrum for many

yvears. As discussed in the previous Chapter, other observations of eardrum
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vibfatidgs did not agree with Békésy's findings, but they had little impact
on the theory. These other observations were generally non-quantitative and
were suspected of being outside the normal range of operation of the eardrum.
However, more recent results have also contradicted Békésy's, and in fact are
closer to the predictions of Helmholtz. In consequence, Helmholtz' curved-
membrane theory has been revived, albeit in a somewhat modified form.

The curved-membrane and hinged-plate theories are discussed in Sections
6.2 and 6.3, respectively.

The planeQmembrane and plane-plate models have no particular basis in

experiment, and do not take into account the obvious shape of the eardrum.
They have been considered worthy of some consideration, however, because of
their analytical simplicity. They are discussed briefly in Sections 6.4 and
6.5. '

In this thesis I suggest what may be called a curved-shell model of

eardrum function. This stands in the same relation to the curved-membrane
model as the plane-plate does to the plane-membrane model. The curved-shell

model is investigated in Chapter 12.

6.2 Curved-Membrane Model

6.2.1 Helmholtz (1869) observed that the eardrum is "almost inextensible",
describing its behaviour when torn by pins on a flat surface as more like that
of a collodion film than like that of rubber. Noting the curvature of the walis
of the drum, his basic hypothesis Wés that this curvature served to provide a
lever action of the sort illustrated in Fig. 6.1, with the structural elements
(namely, the radial fibres) being inextensible. TFig. 6.la shows a simple
lever system: it can be shown that a displacement:qigives rise to a smaller
displacement T, the lever ratio increasing with decreasing ¢ and increasing
9. This transformation from large input to small output displacement is just

what is required to augment the transformer action of the middle ear.
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If one implements the same principle using a larger and larger number
of smaller and smaller rods, one arrives in the limit at the situation shown
in Fig. 6.1b: the lever consists of a single inextensible but flexible fibre.
Fig. 6.1c shows how the ear can be interpreted in terms of such a system, the
upper supports representing the tympanic ring and the lower ends of the fibres
being attached to the manubrium, whose direction of displacement is restrained
(by ligaments, and possibly by symmetry).

Helmholtz analyzed this single-fibre system and showed that the lever
ratio increases with decreasing curvature, as for the two-rod system. How-
ever, the single-fibre system (as well as any multi-rod system except the
two-rod one) is not stable since its lack of bending stiffness prevents it
from maintaining its shape under any but very special loading conditionms.
Helmholtz solved this problem by assuming that the fibre is under tension.
This then requires some transverse structure to maintain the curvature.
Helmholtz assumed that a large number of these fibres are arranged radially,
with extensible circular fibres maintaining the shape of the structure. The
tension is applied around the tympanic ring and at the manubrium. Physiologi~
cally, he believed that the tension was maintained by the malleolar ligaments
and by the "elasticity of the tensor tympani'.

Further analysis of this system requires some knowledge about either
the exact form of the curvafure, or the stress distribution among the circular
fibres, neither of which is known. Helmholtz pointed out that the system
would transmit air-pressure variations'to the manubrium optimally <f its shape
were the same as would be produced by a positive air pressure acting on the
medial surface of a similar system without circular fibres. He therefore
calculated what that shape would be, and then assumed it to be the actual
shape in obtaining an expression for the lever ratio of the system. These
same results were re-derived by Esser (1947) within a more general framework.

Note that Helmholtz' model would explain not only the existence of the
drum's curvature, but also the fact that the drum is conical, since this

shape is required if the curvature is to give rise to a lever action.
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6.2.2 Esser (1947) did a more general analysis of the same system
considered by Helmholtz: a circular curved membrane under tension, clamped
at the periphery, and with a force applied to a disk (or point) at the
centre representing the malleus, as shown in Fig. 6.2. He did not
immediately make assumptions about the extensibility of the fibres.

Consideration of the equilibrium requirements of an element of the

surface gives two differential equations:

d(ry.)
————— -— = 0
dr Yc
d cosa + cosa
r dr Ye 77 P
where r = radial codrdinate (cm);

p = applied pressure (dyn cmfz);
= local slope of drum (see Fig. 6.2);

and Yes¥, = radial and circular components of tension (dyn cmfl).

The tension distributions, Yr(r) and Yc(r), and the eardrum shape, a(?), are
all unknown functions of r. Thus, there are two equations in three unknowns,
and a third equation is needed to permit solution of the problem. Some
assumption is necessary, and Esser considered four different cases.

Esser's first case was to assume Yc = constant. Given this assumption,
one can then calculate the stress distributions and the shape function. 1In
particular, Esser calculated the resting shape, that is, the shape whenp= 0.

Esser's second case was to assume Yc ==Yr, that is, equal tensions in
the radial and circular directions. This would be the case for amorphous or
isotropic membranes. The resting shape turns out to be the same as for the
first case.

Esser's third case was the adoption of Helmholtz' assumption, namely that
the resting shape is the same as it would be for Y. = 0 but p 7 0. This is the
situation that Helmholtz showed to be "optimal" for transmitting pressure
variations to the malleus. Esser used the conditions Ye =0and p #0 to

calculate the same shape function as obtained by Helmholtz, and then, with
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Fig. 6.2.
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Diagram of the system analyzed by Esser.
for explanation. (After Esser, 1947)

See text -
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p = 0, went on to calculate the tension distributions Y. and Y- The
equation he obtained for Yo showed it to be increasing towards the periphery,
which he tock as agreeing with the increasing density of the circular fibres
toward the periphery.

Esser then showed that Helmholtz' hypothesis of inextensible radial
fibres makes it particularly simple to study the force transformation of this
lever system because, if the malleus is held fixed, the shape of the drum does
not change when the applied pressure p is changed. This is because the shape
.due to the circular fibres is the same as the shape due to the air pressure.
Thus, one can calculate the force-transformation ratio, which increases for
decreasing curvature or increasing tension. The system is equivalent to a
rigid lever.

Esser's fourth case was to assume that Y, does not change during drum
motions. This is equivalent to assuming either that circular-fibre elongations
are much smaller than radial-fibre ones, or that circular fibres are very
yielding so that their elongation produces small tension changes. This was
similar to Helmholtz' hypotheses in that he took the circular fibres to be
more extensible than the radial omnes, but instead of taking the radial fibres
as inextensible, he took the circular ones as very extensible. Esser pointed
out that his assumption was "made for mathematical simplification, but is not
justified by physical or anatomical considerations.” .

A considerable amount of algebra, valid only for small displacements,
shows that the system is equivalent to a non-rigid lever combined with a
spring. (The spring also applies to case 3, with Helmholtz' hypotheses.)

The lever ratio again increases with decreasing curvature. Esser also found
that the lever ratio is less than one for very stretchable radial fibres, but
can increase to very large values for sufficiently stiff radial fibres and
small curvatures.

His analysis resulted in a number of multiple integrals. In order to
evaluate them he first had to assume that the shape was that predicted by

Helmholtz, and for some of them had to ignore the curvature altogether.
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6.2.3 Khanna (1970, Appendix III) estimated a value for the effecti&e
lever ratio by making a further assumption: he assumed that the drum is
constructed so that the work it ﬁerforms on the malleus is spread evenly
along the manubrium. He further assumed that the work done on the malleus
equals the work done on the drum by the air pressure, neglecting the work
involved in stretching the radial and circular fibres. Taking the work done
on the eardrum as the product of the total force (due to pressure) and of the

average drum displacement, and using anatomical measurements and his experi-
force on malleus
force on drum
average drum displacement
malleus-tip displacement
was based on measurements of the component of drum displacement perpendicular

mental results from the cat, he calculated a ratio of equal

to 1.96. Note that the value he took for the ratio

to the plane of the tympanic ring. It would be more correct to use the total

displacements perpendicular to the surface of the drum.

6.2.4 Recent modifications. Tonndorf & Khanna (1972) proposed two

modifications to the curved-membrane theory, to remove certain conflicts with
experimental observations. The first modification is simply a reduction of
the expected value of the effective lever ratio due to the curved-membrane
mechanism. This is consistent with an error found in Helmholtz' calculations
(Hartman, 1971) and with their recent experimental results concerning the
ratio of drum to malleolar displacement. '

The second modification concerns Helmholtz' and Esser's assumption of
greater elasticity for the circular fibres than for the radial ones. Tonndorf
& Khanna (1972) felt that the two sets of fibres should be similar, and that
they should both be considered to be inextensible since they appear to be
collagenous. They proposed that the required elasticity might be found in
the mucopolysaccharide ground substance between the layers of fibres. They
suggest that the circular fibres might slide as much as two fibre diameters
(about 10-3 cm) along the radial fibres in the region of maximal displacement
(about half way between the manubrium and the periphery). It should be noted
that this is equivalent to a circumference change of 27 ><10-3 cm (neglecting

a small downward correction due to the slope of the eardrum), compared to a
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circumference of about 27 x 0.25 cm. In other words, the circular fibres,
if fixed to the radial ones, would undergo a stretch of about 0.47%. This
is considerably less than the ultimate strain of about 57 reported for
collagenous tendon (Wilkes et al., 1973, for example), so it may not be
necessary to assume that all of the yielding takes place in the ground
substance.

As concerns the assumed greater elasticity of the circular fibres as
compared to the radial ones, it should be noted that the circular-fibre
layer is generally thinner than the radial-fibre layer, so that the effec-
tive stiffness of the former will be less even if the elastic moduli of the

component fibres are the same.

6.2.5 Objections. Tonndorf & Khanna (1972) answered a number of ‘
objections that had been raised against the curved-membrane theory, partly
by means of the proposed modifications mentioned above. In addition, they
felt that arguments against the theory that are based on the effects of
drum perforations in different positions are not conclusive because of the
small size of the differences measured.

More recently, Marquet et aZ.kl973) raised five points against the
curved-membrane theory as presented by Tonndorf & Khanna. Their first point
was that there is no justification for considering the circular fibres to be
more extensible than the radial ones. This is discussed above. Their
second point was that the theory as presented involved only static consider-
ations. This is true, but it should be noted that inertial effects are
insignificant up to about 1 kHz.

Their third and fourth points concerned the details of the analysis
presented by Tonndorf & Khanna (1970). That presentation, however, was very
much simplified in order to explain the basic principles of the type of
lever action proposed. The analyses of Helmholtz and Esser take care of
the more involved aspects of the theory.

Finally, Marquet et al. presented some experimental results intended

to demonstrate that the effective lever ratio of the eardrum does not change
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when the curvature changes asa result of static pressures. However,

Tonndorf & Khamna (1972) pointed out that this lever-ratio change 1s likely
to be quite small. Marquet et aql. did not indicate the resolution of their
apparatus, but their results were plotted on a linear pressure scale with an
upper limit of 120 mm H,0, which corresponds to about 150 dB SPL. This indi-
cates that their resolution was probably not adequate to determine details of

behaviour within the normal, linear operating range of the eardrum.

6.3 Hinged-Plate Model

The measured vibration patterns on which Békésy (1941) based his stiff~-
plate description are discussed above in Chapter 5. He estimated that about
65% of the drum is "stiffly coupled to the manubrium" in man. He described
the drum as acting like a "stiff piston" ("starrer Kolben") but he did not
mean ''piston” in the conventional sense, since it rotated rather than just
moving back and forth.

This description led to the common use of the term "effective area"
in discussions of middle-ear lever ratios. Khanna (1970) pointed out that,
in calculating a value for the ossicular lever ratio, one should not take the
alr pressure as acting at the tip of the manubrium, since the pressure is
acting uniformly across the "effective area'. Note also that in specifying
an effective area one should take into account the fact that the pressure
acting on the "lower fold" will have some influence on the malleus, albeit
reduced.

Békésy felt that the conical shape of the eardrum provided a close
coupling between the drum and the manubrium. This presumably would be a
result of the greater effective stiffness of a conical diaphragm as com-
pared to a flat one. Except for its rotation about one edge, the eardrum
in B&késy's conception behaved very much like a loudspeaker diaphragm,
stiffened by its conical shape, loosely supported at its edges and vibrating
like a piston. The geometric stiffening mechanism provides a rigid piston

with very low mass.
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Békésy (1949) made some measurements on a stretched, circular membrane

made of rubber, and concluded that an embedded disk (representing the manu~

90

brium and the part of the drum stiffly coupled to it) provided more sensitivity

than did an embedded rod (representing the case of a drum not stiffly coupled
to its manubrium).

There is no clear anatomical indication that the eardrum is built to
function like a stiffened cone with a flexible periphery. Békésy admitted
that the "lower fold" is only weakly developed in many specimens, and
suggested a particular susceptibility of this part of the drum to disease
and drying. It is not clear whether he believed that the greater flexi-
bility of the lower fold was due to structural differences, or to its éhape,
or both. Fumagalli (1949) interpreted the fibre structure of the eardrum as
consistent with behaviour as a stiffened cone, but the discussion was very
qualitative. He suggested that the mode of attachment of the radial fibres
to the tympanic ring, including the presence there of some elastic fibres,
provides the necessary flexibility.

6.4 Plane-Membrane Model

Frank (1923) modelled the eardrum as a plane membrane under tension.
For simplicity, the drum was assumed to be circular, and the manubrium was
taken to be a symmetrically located rigid rod, hinged at the circumference.
The rod had infinitesimal width.

Even with these simplifications, approximate numerical techniques were
required to calculate natural frequencies and vibration patterns. Indeed,
even in the static case, the problem becomes difficult to handle analytically
as soon as the length of the embedded rod is made to be anything other than
half of the diameter. BEkésy (1949) made some experimental measurements on
a physical model consisting of a circular stretched membrane, made of rubber.

With so many oversimplifications, the quantitative results of the model
are of relatively little interest. In Chapter 10 below I shall present the

results of a plane-membrane model, studied numerically, which does not require
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most of the assumptions needed by Frank. Even so, it must be realized that
no plane-membrane model is a realistic representation of the mammalian

structure.

6.5 Plane-Plate Model

Gran (1968) recognized that Békésy's observations of low eardrum tension
and significant bending stiffness indicated a need to model the drum as a
plate rather than as a stretched membrane. He ran into difficulty in ana-
lyzing such a system, however, even though he was considering only the
geometrically simplified case of a plane circular plate with a radially
positioned manubrium hinged at the circumference. Such an arrangement
becomes difficult to analyze if one assumes fully clamped boundaries‘(as
defined in Section 4.2 above) since the malleus is thereby prevented from
rotating. Gran, howevér, felt that it was necessary to consider the
boundaries as fully clamped, based on Békésy's example when calculating
Young's moduli in his 1949 paper. (As discussed in Section 4.2, Békésy
did not actually imply a fully clamped eardrum boundary.)

Gran handled the problem introduced by the clamped boundaries by
decomposing the eardrum vibrations into two components: one component
which did not involve any displacemént of the malleus, and a second com—
ponent which made up the remainder of the vibration. He did not attempt
to handle the difficulties involved in analyzing the second component.

For his analysis of the first component, he assumed the drum to be
uniform and isotropic, and also had to assume a simplified shape for the
manubrium, namely, that of a sector of the circle. Even so, all that he
was able to accomplish was an approximation of the first few natural fre-
quencies, taking into account the effect of the closed tympanic cavity. He
attempted to use his model to predict a bending-stiffness value based on
impedance measurements, but obtained a range of values 60 to 250 times the
value measured by Békésy.

Gran used the Rayleigh-Ritz procedure for his numerical calculatiomns,
which is the procedure that forms the basis of the finite-element method

used here.
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CHAPTER 7

SIMULATION METHODS

7.1 Introduction

This chapter is a general discussion of methods for simulating
physical systems which are defined mathematically as boundary—valué
problems. That 1s, these systems are continua with certain constraints
imposed by boundary conditions. Particular attention will be paid to
mechanical systems of two or three spatial dimensions.

Section 7.2 will present a quick over-view of approaches to the
solution of practical boundary-value problems, and will discuss briefly
the reasons for choosing to use the finite-element method. Section 7.3
reviews the concepts of the finite-element method, and then Sections 7.4
and 7.5 present general pictures of the particular finite-element formu-
lations used in this work for the plane-membrane and shell models,
respectively. The details of the methods used here are given in more
detail in the next chapter.

The final section in this chapter considers the range of validity
of the present methods, and indicates how they might be éxtended.

7.2 Approaches to Boundary-Value Problems

The simplest boundary-value problems may be solved by writing down
the differential equations from consideration of the physical system, and
then solving the equations (with their associated boundary conditions)
analytically, using separation of variables to reduce a multidimensional
problem to several one-dimensional ones. Separation of variables is only
possible for a few simple boundary shapes, however, and for arbitrary

boundaries approximate analytical methods are required, such as variational
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techniques, perturbation techniques and conformal mapping. For more
complicated shapes, or in the presence of inhomogeneities, numerical
methods become necessary. The main numerical methods for solving
differential equations are numerical integration, the finite-difference
method and the finite-element method. The first is generally not used
for multidimensional problems. '

The finite-difference method consists of replacing the differential
operétors by difference operators. Graphically this is equivalent to
placing a grid over the structure and considering only points at inter-
sectioné of grid lines. The finite-element method involves conceptually
dividing the structure into elements of finite size whose geometries are
simple enough to permit analytical intra-element solutions of the differ-
ential equations. One takes into account inter-element effects by
considering the various elements to be connected only at specific nodes
on their boundaries. Both the finite-difference and finite-element methods
result in systems of simultaneous algebraic equations that can be solved by
standard numerical methods.

There are a number of features that make the finite~element method
particularly attractive. First, in even its simplest form it handles
irregular boundary shapes very conveniently. Second, it is relatively easy
to handle inhomogeneities, nonlinearities, and complex geometries and
boundary conditions systematically. Third, one need never analyze the
behaviour of the whole system. All of the analysis is done on simple
elements, and even there one need not be able to write down the governing
differential equations. The elements can be formulated using any method
that is convenient, such as the variational method often used for plates
and shells. '

Another reason for the popularity of the finite-element method is
that it can be undérstood on a physical, or intuitive, basis. 1Its use is
essentially an extension of the very common technique of analyzing
mechanical or electrical systems as networks of interconnected discrete

components.
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7.3 Concepts of the Finite-Element Method

7.3.1 Introduction. This section is not intended to be a complete

description of the finite-element method. Rather, it is a brief intro-
duction to some of the concepts involved, in order that the reader may
understand the significance of the element formulations discussed in
Sections 7.4 and 7.5, and the implementation details presented in the
next chapter. A number of texts are available concerning the finite-
element method. The first such Waé that of Zienkiewicz & Cheung (1967),
but recently several others have been published (Zienkiewicz, 1971; Desai
& Abel, 1972; Martin & Carey, 1973; Norrie & de Vries, 1973; Ural, 1973;
Brebbia & Connor, 1974).

When using the finite-element method, the physical system to be
analyzed is divided into a number of discrete two-dimensional or three-
dimensional elements which may or may not correspond to natural sub-
divisions of the actual structure. For example, for an assembly of plates
and beams, the elements may consist of the individual plates and beams
themselves, if these are easy enough to analyze individually. On the
other hand, @ single homogeneous plate of irregular shape may be considered
to be composed of a number of triangular or rectangular plate elements
which together make up the over-all irregular shape, but which individually
are easy to analyze. Once one has divided the structure into elements, the
mechanical behaviour of each element is analyzed, and its response to
applied loads is expressed in terms of the displacements of its edges.

This analysis is often based on the Ritz-Rayleigh procedure, which is
discussed in Section 7.3.2. An example of a particularly simple element
. formulation is presented in Section 7.3.3.

The result of the element analysis is a matrix equation rélating the
behaviour of the element to the applied forces. The components of the matrix
are functions of the shape and properties of the element. If all of the
elements in the structure are of the same type, such as triangular membrane

elements, or quadrilateral thin-plate elements, then after the initial
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element analysis has been done once one need only substitute the shape
and property definitions for each element into the formulae obtained for
the matrix components. In fact the user seldom needs actually to do the

preliminary analysis at all, since such analyses have been published in

" the literature, and included in computer programmes, for a wide variety

of element types.

Once the element matrix equations are ready, they are all combined
together into one over-all system matrix equation, as discussed in Section
7.3.4. (The boundary conditions are also included in the system matrix
equation.) Since the behaviour of each element has been described in
terms of its behaviour at its edges, and in fact at certain discrete nodes
along its edges, this assembly of element matrices is simply a statement
of the fact that a node shared by two elements must have the same displace-
ment when considered as part of eilther element, and of the assumption that
the elements can only interact at these discrete nodes.

The actual solution of the system matrix equation is discussed in

Section 7.3;5.

7.3.2 Ritz-Rayleigh procedure. The Ritz-Rayleigh procedure was

introduced by Ritz in 1908 as a generalization of a technique described

by Rayleigh in 1877. It is the most common procedure used for formulating
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finite-element approximations. The following discussion is based om Stakgold

(1968, pp. 332-335).

The procedure is based on the theorem of minimum potential energy in
mechanics. This theorem states that if one obtains a functional giving the
potential energy of a system, then the "admissible" function which minimizes
that functional is the solution of the system. An admissible function is
one which satisfies the boundary conditions of the boundary-value problem,
as well as certain continuity conditions.

In practice it will be difficult or impossible to find the one
function which actually minimizes the functional. Thus, one must limit the
set of functions over which one will attempt to minimize the functional.

The Ritz-Rayleigh procedure consists of restricting the search to a
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particularly simple subset of admissible functions, namely, the space of
linear combinations of n independent admissible basis functions wl(x),...,
wn(x). The value of n is chosen to be as small as is consistent with the
accuracy required of the answer. The particular set of basis functioms
used is more or less arbitrary, as long as they are independent and
admissible.

Since each of the basis functions is admissible, every function in
the space of linear combinations will also be admissible. These functions

can be expressed as
n

wi(x) = ; ciwi(x) s
where the c; aren constants definingw(x). Now, minimizing the functional
F (w) over this set of functions evidently requires choosing the(zi such that
F (which is now a function of thetzi) is minimal. Thus, taking the partial
derivatives of F with respect to each (}iin turn and setting it to zero, one

ends up with a set of »n algebraic equations in el

n

-—-—a—- = —

aci F( E cj Wj) 0, 1=1,2,... n.
j=1

Thus, the boundary~value problem is reduced to the solution of # linear

equations in # unknowns.

7.3.3 A simple element analysis. As an example of the type of

analysis involved in the formulation of finite elements, this section will
consider the analysis of a very simple case: a triangular plane-membrane
element using only three basis functions.

The differential equation governing a plane membrane

under tension, vibrating sinusoidally, is (Rayleigh, 1877)

TVZ2w + owlw =9p,

where w is the membrane displacement (cm); o is the area density (gm cm—z);
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w is angular frequency (sec—l); T is tension (dyn cm_l); and p is applied

pressure (dyn cm-z). This can be rewritten as
V2w + A%y =g .

It can be shown (Forsythe & Wasow, 1960, Chap. 3) that the energy )

functional corresponding to this system is

F(w) = é/ﬁ Vw|2ds + é//x2w2ds —//wgds,

where the integrals are over the entire region of interest, in this case
the triangular element. The three integral terms on the right-hand side
represent energy due to membrane tension, inertia, and the applied pressure,
respectively.

This functional is the one to be minimized using the Ritz-Rayleigh
procedure. As for what basis functions to use, the simplest choice is to
choose a set which permits the displacement field over the element to be a
general linear function of x and y. For this, three basis functions are
needed. There are two ways of formulating them, one based on Cértesian
codrdinates and the other on so-called '"natural" codrdinates. The ultimate
result is the same, but in some circumstances one or the other formulation
may be superior. I shall present both methods below.

The Cartesian-codrdinate method involves choosing as basis functions

the set {I, =, y}. The displacement at any point (x,y) in the element is
then given by a linear combination of these three functions, namely,

wx,y) = ¢y + X gy .

Following the Ritz-Rayleigh procedure, one then replaces w by this expression
in the equation for F(w), carries out the double integrations, and differ-
entiates with respect to each of the c; in turn. Setting the derivatives

equal to zero then results in a set of algebraic equations for the et

Ac—=Bg,
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where the components of g represent the nodal values of the pressure
field g(x,y). The components of the matrices A and B are functions of
the vertex coordinates of thé triangular element,(xl,yl,xz,yz,xs,ys),and
of A.

This equation is the one that would have to be solved if the element
were alone. If it is part of a larger system, however, the equation must be
transformed so that it can be combined with similar equations representing

other elements. Specifically, one uses the transformation

LA 1 X ¥y ¢y
“ollt % 7, 2
LEY 1 X3 Y5 Cgy

or, in matrix notationm,

w=Xc.

The wi are the nodal displacements, and this equation represents simply

the expression of the nodal displacements as linear combinations of the
basis functions. Using the inverse transformation, the algebraic equations
describing the behaviour of the element become

AX lw= Bg.

Changing notation, we may write
Sw=Bg.

Note that the right-hand side is actually a vector of nodal forces, so that

we may also write the equation as
Sw= f.

The components of the matrix § are evidently ratios of forces over displace-
ments, and § is known as the element stiffness matrix.

The natural-codrdinate method (Desai & Abel, 1972, pp. 88-91)

expresses the location of any point in the triangular element by the area
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coordinates (cl,cz,ts), where T; ==Ai/A; A is the total area of the
triangle, and the Ai are as shown in Fig. 7.1. (Note that the three z;
are not independent, since Cl + CZ + C3’= 1.) It can be shown that the

relationship between Cartesian codrdinates and these '"'matural" codrdinates

is given by
1 1 1 1 Cl
- oy’
X X, Xy Xg CZ xX'C.
y Y1 Yo ¥4 C3

We may now use'{cl,cz,cs} as the set of basis functions. It can easily
be seen that in this case the coefficients e; become the nodal displace-
ments W, Following the Ritz-Rayleigh procedure again leads to an

equation of the form
Sw:f.

7.3.4 Assembly of system equation. The previous section has out-

lined the analysis for a simple triangular élement. Suppose that a system
to be studied consists of two such elements interconnected as shown in
Fig. 7.2. For the first element, substituting the vertex coordinates and
material properties into the formulae obtained from the analysfs gives the
stiffness (S) matrix components aij for the equations relating the nodal

displacements to the nodal loads:

211 %2 213 Y1 £y
a7 899 353 v, =152 .
331 83y 833 Vq £q

99
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Fig. 7.1. Natural codrdinate system. Aj;, Ao and A3 are the natural
cobrdinates of the point shown in the triangle. See text for explanation.
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Fig. 7.2. Simple two-element system, showing two triangular
elements coupled at nodes 2 and 3.
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Similarly, for the second element one obtains the matrix equation

b3 byp Py3 v

byy  byy By vyl =8 |-

by; b3y Pgj Y g,

Now, since the elements are connected at nodes 2 and 3, the w2 and

w, in the first equation are the same as the ones in the second equation.

3
Therefore one can combine the two equations as follows:

a a a 0 w f

11 12 13 1 1
a1 2211 31 Pyg N[ 2 |_[ f2tE2
331 33%Py1 33370y Po3 fY V3 fite,
0 bap b3y P33/ \¥, 8,

The system boundary conditions now consist of prescribed values
for some of the wi' These are implemented in the usual way, as discussed
in Section 8.5 below.

The force terms on the right-hand side of this equation represent
nodal forcés due to body or surface forces acting on the various elements,
as discussed above. One can also add further nodal force terms representing
specified point loads on the system. The equation then represents the entire

boundary-value problem, and is solved as discussed in the next section.

7.3.5 Solution of system equation. The actual nodal displacements

are obtained by solving the system matrix equation, which is equivalent to

a system of linear algebraic equations. There are a number of ways to do this
(see discussion in Ural, 1973, for example), but the most common methods are
Gauss-Jordan elimination and Cholesky's method. The former requires a smaller

number of computational steps. The latter uses less computer memory, but takes
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more time and is less accurate because it involves taking square roots.

For problems of the size treated in this thesis, either method is adequate.

7.4 Membrane Elements

In Section 7.3.3 above is presented a membrane element using the set
of linear basis functions‘{cl,c2,cs }. One may develop higher-order elements
based on more complex functions of the FE In particular, Silvester (1969)
has developed an element based on polynomial functions of the Ci which per-
mits very efficient calculations of element stiffness matrices. This is the
method used in the programme adapted for use in the plane-membrane analysis
reported in this thesis.

I shall not repeat the theory behind these high-order-polynomial elements
here. Two points should be mentioned, however. The first is that the coefficients
of the basis functions (the ci) include, in addition to the displacements at
the vertices of the triangle, the displacements at a number of extra nodes along
the edges and in the interior of the triangle. For example, a third-order
element has two extra nodes on each edge and one in its interior. These
extra nodes do not add to the difficulty of defining the physical problem to
the computer since they can easily be generated automatically.

The second point is to justify the use of more complex high-order elements
instead of a larger number of simple low-~order elements. The order of the system
of equations to be solved is the same if one uses nine first-order elements,
for example, instead of one third-order one. It has been shown, however
(S8ilvester, 1969; George, 1971), that the accuracy in the latter case will be
considerably superior. This is analogous to the fact that if ome wishes to use
three degrees of freedom to approximate an arbitrary curve, then it is generally

better to use one second-order polynomial than to use two straight-line segments.
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7.5 Shell Element

The formulation of shell elements is considerably more complicated than
is the case for membrane elements. The main reason for this is that in addition
to the transverse displacements, w, one must alsb consider in-plane displace~
ments. These are denoted by u and v, parallel to the x and Yy axes respectively.
A further reason is that the governing equations involve higher-order derivatives
of the transverse displacement than is the case for the membrane. Finally,
since the shell has a non-zero thickness, one must use volume integrals instead
of surface integrals.

The elements used here are those described by Mufti & Harris (1969). Each
element is a thin, plane triangular plate. I shall present only enough of their
derivation to relate them to the membrane elements in Sections 7.3.3 and 7.4.

The potential energy functional for the element is

v ~[[feaa -[[fus

This expression is analogous to the one given earlier for membranes, but the
scalar displacements and forces have become vectors with &, ¥y and 2 components.
Thus, u= (¥ v w). The two integrals represent energy due to strains and to
the applied forces, respectively. The strains, €, are given by derivatives of
the components of u; the stresses, O, are related to the strains by Hooke's
law which embodies the material properties of the plate. Note that there is
no inertial-energy integral, since we are considering only static displacements.
In this formulation, the basis functions used to describe u and v are the
set {I, x, y}, as for the membrane. For w, however, the set is {1, z, y, x2,
xys y%, x3, (Px2y+Qry?), y3}. This is equivalent to the use of third-order
polynomials in Section 7.4, except that the ny and xy2 terms have been com~
bined; the constants P and § are both equal to one except under certain
conditions described by Mehrotra et aql. (1969). There are thus 15 constants,
Css to be found: three for u, three for v, and nine for w.
Application of the Ritz-Rayleigh procedure again leads to a matrix

equation in ¢. We then transform ¢ to a vector of nodal displacements, w. This
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displacement vector contains #, ¥ and W for each node, plus the derivatives
W

- Sg and §%~at each node.

Note that in the element formulation used by Mehrotra and Mufti, any
coupling between in-plane (membrane) and out-of-plane (bending) action is
neglected, in order to simplify the problem. This requires the assumption
that the displacements are much smallér than the thickness of the element,
which is acceptable for the eardrum under normal acoustical stimulation.

The elements used here are 'mon-conformable', that is, there will in
general be discontinuities of displacement and slope when crossing from one
element to another. This problem is not necessarily serious, and plate elements
which are conformable usually have other disadvantages. Mehrotra (1969) and
Mufti (1969) gave examples comparing the behaviour of conformable and non-

conformable elements.

7.6 Range of Validity

7.6.1 Introduction. There are upper limits on the displacements and

frequencies that the methods used here can handle. These are discussed in the
following two sections. Section 7.6.4 then discusses the restriction of

homogeneity.

7.6.2 Displacements. The problem formulations and solution procedures

used in this thesis are all linear. Large nodal displacements introduce both
geometric and physical nonlinearities.

Geometric nonlinearities arise when the deflections are no longer small

compared to the dimensions of the system. At this point the deflections signi-
ficantly change the actual shapes and orientations of the elements, and invalidate
the problem formulation based on the undeformed geometry. The usual way to
attack such a situation is with iteration: for example, the problem may be
repeatedly reformulated to match the displaced geometry, and the displacements

be recomﬁuted based on the new geometry, until the displacements converge to

a stable value.
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Physical nonlinearities arise when parts of the system become distorted

beyond the linear ranges of their elastic properties. Again, iteration is
generally used in this case. Note that physical and geometric nonlinearities
often, but not necessarily, occur together.

A third constraint on the displacements permissible to the shell model
presented here is that they must be much smaller than the thickness of the
shell (which is 10 to 50 ym). This was assumed to simplify the formulation
of the finite element, as mentioned in Section 7.5 above.

The displacements of the eardrum under normal acoustical stimulation
are small enough that they do not raise the question of nonlineérity. The same
is not true, however, of the displacements due to large static pressure changes
such as are used in tympanometry, nor is it true of the effects of middle-ear-
-muscle contractions. In both these cases the displacements are so large as to
visibly change the shape of the eardrum. The methods presented in this thesis,
then, are not adequate to model these situations. The finite—element method
itself, however, is very suitable for studying such large displacements. The
book by Oden (1972) is devoted specifically to the treatment of nonlinear
problems by the finite-element method.

7.6.3 Frequency. The models presented here have an upper frequency limit
because of the assumption that the sound pressure is uniform across the surface
of the eardrum (and throughout the middle-ear cavity). To give an idea of the
 seriousness of this limitation, Fig. 7.3 shows the human eardrum in comparison
with a sine wave representing thé wavelength of sound in air at 10 kHz, the
highest frequency used in this study. It can be seen that the pressure falls
off by only a few decibels toward the outside of the drum. This is negligible
compared to the other possible sources of error in the model. When such
refinements do become necessary, it will be possible to use the finite-element
method itself to combute sound-pressure distributions within the external ear
canal and middle-ear cavities.

Another frequency limit is imposed on the present models by the fact that,

as the vibration patterns become more complex at higher frequencies, they will
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Fig. 7.3. Comparison of acoustical wavelength with dimensions of
eardrum. - At top and bottom are plan and side views, respectively, of the
human eardrum. In the centre is a sinusoid representing the wavelength of
a 10-kHz plane wave in air. ) R
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ultimately become too complicated to be faithfully reproduced by the limited
resolution of the finite-element subdivision used. As will be seen in Chapter
10, however, the patterns do not become overly complicated in the frequency

range considered here.

7.6.4 Homogeneity. As described in Section 2.3 above, the eardrum is
composed of a number of layers with different characteristics. The two layers
that are presumably most important structurally are each highly anisotropic,
having strong 'grains' in different directions, much like plywood. 1In an
analysis of the behaviour of plywood in which the grain directions of the inner
and outer layers are mutually perpendicular, Hearmon (1961, pp. 37-38) found
that in general a single Young's modulus could not be used to describe the
behaviour of the plywood under both in-plane (membrane) and out-of-plane
(bending) stresses. In the present work, however, I have assumed the eardrum
to be homogeneous throughout its thickness, and characterized by a single Young's
modulﬁs. This is partly for simplicity and partly because there are not enough
experimental data available to provide a more detailed representation of the
drum. The finite-element method itself has been used to analyze laminated

structures, and materials that consist of fibres embedded in a matrix.
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CHAPTER 8

IMPLEMENTATION OF FINITE-ELEMENT METHOD

8.1 Introduction

This chapter presents details of the computer implementation of the plane-
membrane and shell eardrum models considered in this work. Sections 8.2 to 8.6
discuss in turn the reading of the model definition into the computer, the form~
ulation of the individual element stiffness matrices, the assembly of the element
matrices into one system stiffness matrix, the inclusion of the boundary conditions,
and the solution of the system equation. All of these items are based on the
methods used in the programmes of Mehrotra et al., for the shell model, and of
Konrad & Silvester (1971) for the membrane model. The latter was written in
the Department of Electrical Engineering (McGill University) for electromagnetic-
field studies, the equations for which are the same as those for plane membranes.
The programme used here for the shell model was based on one written in the
Department of Civil Engineering (McGill University) by Mehrotra (1969), and
subsequently modified somewhat by Mufti (1969); it has been described in the
literature by Mufti & Harris (1969).

Sections 8.7 to 8.9 describe the modifications to the programmes that were
made to include the effects of the rigid manubrium, the ossicular forces, and the
middle-ear air cavities, respectively. Section 8.10 discusses the calculation of
acoustical input impedance for the membrane model.

Section 8.11 discusses the methods used in plotting the iso-—amplitude
contours based on the displacements calculated for the membrane and shell models.
These methods are based in part on the plotting programme of Cséndes & Silvester
(1972) from the Department of Electrical Engineering (McGill University).

Finally, Section 8.12 presents the computer hardware requirements for
these programmes, and some execution times.

More complete descriptions of the computer programmes used in this work

are available in a separate report (Funnell, 1975).
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8.2 Definition of Models

The procedures used here for reading the model definitions into the
computer'are essentially the same as those used in the original programmes,
although certain changes in data format and arrangement have been made to suit
the particular problems being solved and the particular computer being used.

An important adjunct to the finite-element programme itself is the use
of interactive grapﬁics programmes to prepare the data files used to define the
models. Special programmes have been written for both the membrane and shell
models which display node positions and element definitions. These aid in check-
ing the problem definitions for correctness, and in modifying them. The details
of the programmes will not be presented here. There are no significant innova-
tions in them from the point of view of interactive graphics, and the particular
methods used depend strongly on the particular computer hardware available.

One feature of the graphics programme used with the shell model involves
the three-dimensional curvature of the eardrum. As described in Section 11.3
below, the eardrum's radial fibres are assumed to be circular arcs. The user
does not have to calculate and type in the cobrdinates of each node on these
fibres, however. Given the end points of the fibres, and a specified degree of
curvature, the programme automatically calculates the co8rdinates of the inter-
mediate nodes. The algorithm places the nodes so as to divide the fibre into
segments of equal arc length. The user is warned if any of the intermediate nodes
falls above the plane of the tympanic ring, indicating an anatomically unreason-

able geometry caused by specifying too small a radius of curvature.

8.3 Calculation of Element Matrices

The procedures used for this step are little changed from the original
programmes. Note, however, that in the membrane model most of the calculations
must be done with complex numbers since the model involves damping. The original
programme of Konrad & Silvester (1971) used real numbers.

The calculations for the shell model have been accelerated somewhat by
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using analytical inversions of some of the simpler intermediate matrices, rather

than numerical inversions.

8.4 Assembly of System Equations

Again, the methods of the original programmes have not been much altered.
Note that because of the size of the problem, the shell programme requires the
system matrix to be partitioned, and the submatrices are stored in disk files;
this was also done in the original programme, since it is uneconomical to do
everything in main memory even if the computer is large enough. The membrane
problem requires much less storage since there is only one degree of freedom at

each node instead of six.

8.5 Boundary Conditions

The boundary conditions in these models all consist simply of constraining
certain displacements to be zero. 1In the programme for the shell model, each of
these prescribed displacements is forced into the matrix equation by multiplying
" the corresponding diagonal element of the matrix by a very large number, k, and
then replacing the corresponding term of the force vector by the product of k and
the prescribed displacement value. This has the effect of making the equations
corresponding to constrained nodes dominate the system so that their displacements
will not be affected by other nodes.

This method is rather wasteful, since it means that all of the constrained
nodes remain in the system equation as though they were free, and thus add to the
computations required for the solution. Hoﬁever, the method is very easy to
programme.

A more sophisticated procedure is used to handle constrained nodes in the
programme for the membrane model. The nodes are renumbered so that all of the

constrained nodes are put together, and then the system equation is partitioned:
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$11 Si2 wy f

Sy1 Sy W) | f)

where vvl'represents free nodes and W, represents fixed ones. It is then easy

to show that
Syuwy; T f; ~Spow,

Thus, to find w,, one need invert only S

11° The order of the system is reduced

by the number of constrained nodes.
The methods described above are the ones used in the original programmes.
It will be possible to make the shell programme more efficient by rewriting it to

use the same method as the membrane programme.

8.6 Solution

The techniques used for the actual solution of the matrix equations are
quite conventional. More sophisticated methods could be used to take more advan-
tage of the sparseness and bandedness of the matrices, but the extra complexities
might outweigh the benefits for problems of the size considered here. The shell
programme, which is by far the slower of the two, already takes advantage of the
special banded nature of the system-matrix partitions. This is done at the expense
of user convenience, since to ensure the bandedness requires attention to the ways
in which the nodes and partitions of the problem are defined and numbered.

A potential problem in solving large systems of equations is round-off
error. In the shell programme, whose system matrix is much larger than that of
the membrane programme, this source of error was routinely checked by multiplying
the calculated displacement vectors by the original matrices and comparing the
result with the original force vector. The errors were generally a few per cent
or less, although they sometimes became as large as iO to 157. This is not

considered excessive for the present purposes.
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8.7 Manubrium

In the shell-model programme, the rigidity of the manubrium is represented
simply by using a very high Young's modulus. This is wasteful since the displace-
ments of all of the nodes on the manubrium could be represented by a single degree
of freedom, thus reducing the order of the system. The reprogramming would be
quite involved for the shell model and has not yet been done. For the membrane-
model programme, however, I have reduced all of the manubrial degrees of freedom
to a single one using an extension of the method described in Section 8.5. Here
again, the system matrix is partitioned, this time with the three partitions
representing free, manubrial and fixed nodes, respectively. The system equation

then becomes

S11 Sy2 Si3 wy £y
Sy1 Syy Sy3 w, =1 f
S3; S3; Sy w fs

Now, since the manubrial nodes must all be displaced as a rigid assembly, omne

can write

where u iIs a dimensionless variable representing the angular displacement of the
manubrium, and b is a vector whose components represent the perpendicular distances
between the axis of rotation and the manubrial nodes. Substituting this into the

system equation, and premultiplying the second row by b', one obtains

S17 815 Sp3 wi £y
7 4
S3; S5, 833 w; f3

In this way, the set of equations inw2 has been collapsed to a single equation

in u.
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8.8 Ossicular Forces

As mentioned in the previous section, the manubrium in the shell model
is represented simply by elements with very high stiffness. In this case, the
simplest way of simulating the forces acting on the manubrium due to the rest
of the oséicular chain is to introduce a spring aéting at one of the nodes about
half-way down the manubrium. This is done in the programme by adding an extra
stiffness term to the appropriate component of the system stiffness matrix. If
the added stiffness is too large, the manubrium will tend to bend in spite of its
stiffness, because of the concentrated nature of the load. As shown in Section
12.7 belbw, however, this is not a serious problem for reasonable values of the
ossicular forces.

In the membrane programme, the forces on the ossicles are represented by
adding an angular stiffness term to the component of the system matrix correspond-
ing to the angular displacement of the manubrium, after the manubrial nodes have
been collapsed as described in the previous section. Since the membrane model
takes dynamic effects into account, the angular stiffness term added is a complex
number given by v

—é—- mZL) + juR ,
where R, L and C represent resistive (damping), inertial and compliance effects,

respectively.

8.9 Middle~Ear Air Cavities

The effects of the middle-ear air cavities are not included in the shell
model. v

To find the effects of these cavities on the membrane model, we first note
that the pressure change (assumed to act uniformly over the eardrum) of a simple

cavity is given by
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where Po is the resting pressure of the air in the cavity; Vo 1s the volume of
the cavity; and dV and dP are the changes in volume and pressure due to the
displacement of the membrane (see Kinsler & Frey, 1962, for example); y is a
constant (a ratio of specific heats) determined by the type of gas filling the
cavity. 7

Now, using the notation of Section 7.3‘above, the volume displacement of
the eardrum is given in terms of the nodal displacements by

e'Bw, }
where e' is a vector filled with ones. (This expression is based on equation 36
of Silvester, 1973. My B is equivalent to his T.) Thus, in addition to the
original pressure term loading the drum, there is another pressure term with the
opposite sign:
Sw=B(g-kee'Bw),
v P

o)
7 , and e serves to expand the scalar e'Bwto a column vector.
0

where k =

Rearranging, the system equation becomes

(S + kBee'B )w = Bg.
The effects of the cavities are thus included by adding the appropriate amount
to every compoﬁent of the system stiffness matrix. The fact that the middle-ear
cavities consist of two cavities with a narrow passage between them means that
the constant k becomes complex, its value being determined by the constants R,

L, Cbl and Cb2 introduced in Section 4.6 above.

8.10 Acoustical Input Impedance

For the purposes of comparisoﬁ wifh experimental impedance data in Section
10.3.2, it is necessary to calculate the acoustical impedance of the eardrum
based on the nodal disblacements. This is done by calculating the volume displace-
ment using the expression given in the preceding section. This is then converted
to a volume velocity by multiﬁlying by frequency, and divided into the sound:

pressure to give impedance. The impedance of the small ear-canal volume mentioned
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in Section 4.6, namely Cé’ is inserted in parallel with the eardrum impedance in
order to simulate the conditions of the experimental measurement.

It is inefficient to calculate the complete vibration pattern when all
that is required is the over-all volume displacement. The computation becomes
especially time-consuming when one wishes to obtain a complete frequency response
for the volume displacement. Silvester (1973) has presented a method which
requires only the calculation of a number of eigenvalues and eigenfunctions (that
is, natural frequencies and modes). To calculate the volume displacement for any
particular frequency then requires only a simple algebraic computation. Aithough
I have applied this procedure to a simplified form of the present model, it unfor-
tunately cannot be used when the system stiffness matrix contains frequency-

dependent terms such as those representing ossicular and air-cavity stiffness.

8.11 Plotting

The method used for plotting the iso-amplitude contours of the membrane
model is based on the programme of Csendes & Silvester (1972). This involves
dividing each element into second-order subelements and then solving a series of
quadratics to trace out the contour lines. The result for a given contour line
is then a number of disconnected curved line segments. In order to make the
actual plotting of these segments more efficient (at the expense of computation
time) I store all of the points to be plotted for each contour in a disk file,
and then rearrange them to form a single continuous curve. The actual plotting
is done from the rearranged points. (The rearrangement is done by repeatedly
sweeping through the 1ist of points, and picking the closest point to the current
one to be the next point. This practically eliminates the problem of resolving
different branches of given contour lines referred to by Csendes & Silvester.)

Similar plotting methods were used for the results of the shell model,
except that the elements were not subdivided. As discussed in Chapter 7, the
triangular shell elements involve cubic interpolation functions. Fig. 8.1 shows
an example of contour lines calculated from the nodal displacements using the

full cubic functions. It can be seen that the contours are more convoluted than
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Fig. 8.1. Example of contour lines calculated for cat eardrum
model using cubic interpolation functions.
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is physiologically reasonable. This problem with the model is not entirely
unexpected, both because of the non-conformable nature of the elements used (see
discussion in Section 7.5) and because of the coarseness of the finite-element
grid. Since the fine details of the contours are unreliable, there is no point
in using cubic interpolation for the plotting, especially since one can save
considerable time by using a simpler function. (Using the cubic function means
that one has to extract the three roots of a cubic polynomial at every step along
every contour line.) Therefore, I have used linear interpolation functions in

- preparing the contour plots presented in Chapters 11 and 12.

In each of fhe Figures showing iso-amplitude contours in Chapters 9 to 12,
the contours were plotted for five displacement values evenly spaced between the
minimum and maximum values. Thus, all of the vibration patterns are normalized
with respect to peak drum displacement. The actual contours themselves in all
of the Figures in Chapters 9 to 12 are exactly as plotted by the computer; they
-are unretouched except for the addition of dotted lines in some cases, to close
gaps left by the programme or to join lines of equal amplitude for clarity.

For the membrane model, which includes dynamic effects, each displacement
is a complex Quantity. The contour patterns presented in Chapters 9 and 10
therefore represent either displacement magnitude, or the real and imaginary

components of the displacement, as appropriate.

8.12 Computer Hardware Requirements and Timings

These programmes have been implemented on a PDP-12 minicomputer that has
28k words of 12-bit main memory and a single removable-cartridge disk. It also
has a separate floating-point-arithmetic processor that can run in parallel with
the main processor. The programmes have been written mainly in FORTRAN, but
several critical subroutines have been manually streamlined at the assembler-
language level to make up.for inefficient code froduced by the compiler; This
was done mainly to reduce execution times.

The actual times required for problem solution obviously depend largely
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on the size of the model used as well as on the particular computer hardware
available. For the models used here, the plane-membrane programme requires
about 22 seconds to calculate the displacements for a single set of parameter
values; about 5 seconds of this is for the assembly of the system equation and
the rest is for the actual solution. The shell model requires on the order of
20 minutes for a single set of parameter values, about equally divided between
assembly and solution. These figures do not include the times for the plotting
of the results, which are determined almost entirely by the type of plotter used.
Both programmes use almost all of the main storage available, mostly for
storage of matrices and vectors. The amount of memory required has been con-
siderably reduced by the use of programme overlays from disk files. The disk
is also used for a number of data-storage files for both intermediate and final

results.
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CHAPTER 9

DESCRIPTION OF MEMBRANE MODELS

9.1 Introduction

This chapter presents the actual eardrum models used in calculating
the results of the next chapter. The cat and guinea-pig models are de-
scribed in Sections 9.2 and 9;3, respectively. Section 9.4 discusses the
adequacy of the finite-element subdivision.

The actual parameter values used are those given in Chapters 2 to 4,.
except for the membrane tension and resistance which are discussed in the

next chapter.

9.2 Cat

Fig. 9.1 illustrates the shapes of the anatomical structures as they
are modelled for the cat. The position and orientation of the ossicular
axis of rotation are as given by Khanna (1970, Fig. 21). TFig. 9.2 shows
the way in which the model has been divided into elements: the 24 tri-
angles around the circumference are first-order elements, and the rest

are second-order (as discussed in Section 7.4 above).

9.3 Guinea Pig

Figures 9.3 and 9.4 present the guinea-pig model, in the same
formats as Figs. 9.1 and 9.2, respectively. Again, the triangles around
the circumference (21 this time) are first-order elements, and the

remaining triangles are second-order.
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Fig. 9.1. Shape of plane-membrane model for cat.
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Fig. 9.3.

Shape of plane-membrane model for guinea pig.
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9.3

Fig. 9.4, Subdivision of seco



9.4 125

9.4 Adequacy of Subdivision

The elements have been limited to first order and second order to
save computer time. To estimate the accuracy of this second-order model,
I have done some calculations using the third-order model represented in
Fig. 9.5. Fig. 9.6 shows two contour plots computed using each model,
for comparison. At the top are vibration patterns at 100 Hz and 7.5 kHz,
from the second-order model. The former is a typical low-frequency pattern,
and the latter is a more complicated high-frequency pattern which would be
expected to be more sensitive to the limited resolution of the simpler
model. In part b of the Figure are patterns at the same frequencies cal-
culated using the third-order model. Although there are differences
between the patterns calculated using the different models, the patterns
do not really change significantly. For a more quantitative comparison,
I have calculated that the peak eardrum displacements at 100 Hz are
within 57, and the over-all volume displacements (which are less sensitive
to details of the vibration patterns) are within 0.27. At 7.5 kHz these .
figures are higher, as expected, but still small: 77 and 47, respectively.
f peak displacement are within 97 at 100 Hz, and

manubrial tip displacement
even closer (17) at the higher frequency.

The ratios o

From this I conclude that the second-order model is adequate for my

present purposes.
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model. This is the same as the second-order subdivision (Fig. 9.4)

except for the small elements around the periphery, which must be re-
arranged because the interior elements are now third-order instead of
second-order, and. thus have four nodes/side instead of three.

Fig. 9.5. Subdivision of third-order guinea-pig plane-membrane -
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100 Hz 7500 Hz

a. second-order

7500 Hz

b. third-order

Fig. 9.6. Comparison of second-order and third-order models, at
100 Hz and 7500 Hz. Contours represent real part of complex displacement.
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CHAPTER 10

RESULTS OF MEMBRANE MODELS

10.1 Introduction

This chapter presents the results of calculations made using the
membrane models described in the previous chapter. Sections 10.2 and
10.3 present results for the cat and guinea pig, reépectively. The model
outputs for both species are compared to experimental results with respect
to (1) general shape and complexity of vibration patterns; (2) amplitude
of the peak drum displacement; and (3) displacement of the tip of the
manubrium and the ratio of this to the peak drum displacement.

For the guinea pig, the model results are also compared to some
previous measurements of acoustical input impedance as a function of
frequency (see Section 5.4). There are other experimental data available
concerning middle-ear behaviour as a function of frequency: the recent
transfer-function data of Nuttall (1972), for example. I have chosen to
limit myself to the above-mentioned impedénce data for three reasons.
First, the frequency resolution of the impedance data is much better than
that of the transfer-function data — Nuttall measured only five points
between 4 kHz and 10 kHz, compared to about 30 points for the impedance
data. Second, there apparently were some problems with equipment
resonanceé in the transfer-function measurements, making the high-frequency curves
unreliable (Nuttall, 1972, pp. 32-34). Third, middle-ear impedance is
determine& mainly by the eardrum, which ié the focus of interest in the
present work. By contrast, the middle-ear transfer function also depends
heavily on the properties of the ossicular chain and the cochlea, and a
proper comparison of the model to the data would reqﬁire a more careful
consideration of these properties than is within the scope of this thesis.

Most of the parameter values used for these calculations are based

on the estimates presented in Chapters 3 and 4 above. The only exceptions
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are the eardrum tension and resistance. There is no estimate available
for the former, and in fact this parameter probably’ cannot be interpreted
as an actual physical tension. The eardrum may actually function with no
resting tension at all, as represented by the shell model presented else-
where in this work. At least part of the "tension" in this membrane model
serves to provide an effective bending stiffness which in fact is provided
by the inherent stiffness of the eardrum. Values for the tension parameter
have been arrived at by comparing the model results to experimental data.

An estimate for internal resistance was offered in Chapter 3 above,
but it was not very convincing. It has been found to give unacceptable
results in this model, and considerably lower values have been used, as
described in Sections 10.2.1 and 10.3.1 below. Different values have
been used for the two species: the significance of this is discussed in
Section 10.4 below.

10.2 Results from Cat Model

10.2.1 Determination of parameter values. As mentioned above, two

parameters were adjusted to make the model results fit the experimental data,
namely, the tension and the internal resistance of the eardrum. The final
values were chosen in two steps. First, the resistance was set to zZero,

and the tension was adjusted so that the break-up of the vibration pattern
occurred at frequencies éimilar to those found by Khanna (1970). The value
arrived at was 18 x>103 dyn ém_l. If the tension was increased to 19 or

20 x 103, the patterns calculated were too simple, énd if the tension was
reduced much below 18 x 103, the break-up occurred at too low frequencies.
The pattern complexity was taken to be the number 6f amplitude maxima in
each of the anterior and posterior halves of the drum, and the pattern
presehted by Khanna & Tonndorf at their highest frequency, about 6 kHz,

was interpreted to have two anterior peaks and fbur posterior ones (ignoring
the very fine detail of their contour lines and considering only the major

peaks).
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Having established a value for the tension, the resistance was
increased from zero as far as possible without destroying the complexity
of the high-frequency patterns. The value decided on was 18 x 10-4 dyn
sec cm-l. This means a ratio of stiffness to resistance of 107 sec_l,
compared to 103 sec—1 mentioned in Section 3.7 above. Decreasing this
ratio even to 106 sec—1 cut the number of peaks at 6 kHz in half.

As discussed in Section 10.4 below, not too much importance is to

be attached to these parameter values.

10.2.2 Calculated patterns. Fig. 10.1 shows the vibration pattern

calculated at 1 kHz. The patterns at lower frequencies were essentially
identical. This pattern is obviously similar to the low-frequency patterns
found by Khanna and Tonndorf. The only qualitative difference is that a
separate peak does not quite form in the anterior region.

Fig. 10.2 compares calculated (b and ¢) and measured (a) vibration
patterns at the five highest frequencies observed by Khanna and Tonndorf.
Part b shows the iso-amplitude contours calculated from the model for the
magnitude of the complex displacement, for direct comparison with the experi-
mental data. Part ¢ shows the contours for the real (that is, in phase with
the applied pressure) and imaginary components of the displacement, in order
to reveal more clearly the break-up of the vibration pattern.

The model does not duplicate the fine details of the experimental
patterns, but it does show the main features: the posterior pattern starts
to break up at about 4 kHz, and the anterior one at about 5 kHz. Note that,
according to the model, the anterior peak is out of phase with the posterior
one in the region of 3 to 4 kHz. This is opposed to the assumption used by
Khanna and Tonndorf (1972a) in calculating eardrum volume displacements. It
would not really make much difference at these frequencies, however, since
the anterior displacements are quite small.

 Another noticeable difference between the model and experimental
results is that at about 5 kHz the maximal drum displacement in the model

occurred in the anterior region, which was never observed experimentally.
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Fig. 10.1. Low-frequency (1 kHz) vibration pattern

calculated for cat.

Contours represent magnitude of complex
displacement.
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Fig. 10.2. Comparison of experimental and model results at five high
Part

frequencies. Part a represents the same experimental data as Fig. 5.10.
b shows the contour lines (magnitude) calculated for the same frequencies. Part
¢ shows contour lines for the real parts (top) and imaginary parts (bottom row)

of the complex displacements for the same frequencies.
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10.2.3 Drum displacement. Fig. 10.3 is a comparison of experimental

and model data for maximal drum displacement at 100 dB SPL. Except for the
points at 3 and 4 kHz, there is not much more difference between the model
-and one of the cats than there is between the two cats. The model outputs
.at 3 and 4 kHz, however, are much too large. This could indicate either
peaks that were missed experimentally due to insufficient frequency reso-
lution, or, more likely, insufficient damping of resonances in the model.

As noted in the previous section, at about 5 kHz the maximal drum
displacement occurred in the anterior region rather than in the posterior
one. The amplitude of the calculated posterior peak was about half that

of the anterior one at this frequency.

10.2.4 Ratio of drum to malleolar displacement. Fig. 10.4 compares

the model results. to some values of the ratio of peak drum d%splécement
malleolar-tip displacement

measured by Khanna & Tonndorf (1972a). The values calculated from the model

are similar to the experimental ones in that (1) they are in the range 2 to 4
in the low to medium frequencies, and (2) they increase to very high values
above 3 kHz. The chief significant difference between the two sets of data
is that the model results do not show a plateau between 600 and 2000 Hz.

Note that the amplitude of the manubrial displacement, and thus the value

of the ratio EE%? , is strongly influenced by the properties of the

ossicular chain, which properties have not been optimized for these

calculations.
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Fig. 10.3. Comparison of measured and calculated peak drum displacements.
The filled circles represent experimental data for two different cats (Khanna,
1970, Fig. 31 & 32). The stars represent calculated values. The single unfilled
star (near 5 kHz) indicates that at that frequency the peak displacement occurred
in the anterior rather than the posterior regionm.
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Fig. 11). The squares are model data. The unfilled squares indicate values

that fall off-scale.

. The  filled circles are experimental data of Khanna & Tonndorf (1972a,
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10.3 Results from Guinea-Pig Model

10.3.1 Determination of parameter values. As for the cat, the two

parameters to be chosen are the tension and resistance. The tension was
selected on the basis of the low-frequency impedance of the middle ear.
The impedance of the air cavities alone, with the eardrum removed, is
9.4 x 103 dyn sec cm_5 (that is, 9.4 kohm) at 100 Hz for the cavity volumes
used in this model. Previous impedance measurements (Funnell, 1972, for
example) have shown that the impedance of the intact guinea-pig middle.ear
is not much higher than that of the cavities below about 1 kHz. With this
in mind, the tension was set to 2006 dyn cm—l. This gives an impedance at
100 Hz of about 10.6 kohm.

The resistance of the drum was chosen to make the curve of impedance
against frequency qualitatively similar to measured ones. The value decided
on was 0.2 dyn sec cm-l, for a ratio of stiffness (tension) to resistance

of 104 sec—l.

10.3.2 Calculated impedance curve. Fig. 10.5 shows, in part a, an

experimentally measured impedance curve from Funnell (1972); and in part b,
the impedance curve calculated from the present model, using the parameter
values given above. The low-frequency slope and the resonance-antiresonance
at 4 to 5 kHz are due to the middle-ear air cavities. The features due to
the eardrum and ossicles are the height of the 4-to-5-kHz peak, and the
depth of the 8-kHz trough. In these two respects the model output is
similar to the measured curves. Fig. 10.6 shows the effect of varying the
resistance by a factor of ten above and below the value used for Fig. 10.5.
It can be seen that the higher value almost entirely obliterates the peaks
and troughs, while the lower value makes the troughs too deep. Note that
the degree of flatténing of the impedance curve is unaffected by damping
in the ossicular suspension: resistance there will damp the manubrial

vibrations but not those of the surrounding drum.
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10.3.3 Vibration patterns. Fig. 10.7 shows the vibration patterns

calculated from the model at seven frequencies. The contour lines corres-
pond to the real (in-phase) component of the displacement. The pattern
changes little up to 7 kHz, except that the amplitude maximum splits into
two and each half shifts uﬁward. At 7.5 kHz the drum is divided into three
segments, two superior ones in phase with each other and a low-amplitude
‘segment out of phase with the other two. At 8 kHz the inferior peak has a’
larger amplitudé than the superior ones. At yet higher frequencies the
pattern simplifies again, becoming similar to the low-frequency patterns
but with reversed phase.

At low frequencies damping is relatively unimportant, and the magni-
tude of the complex displacement is approximately equal to the real part.
At high frequencies, however, the damping dominates and the imaginary part
of the displacement is larger than the real part. Fig. 10.8 shows the
vibration patterns at the six high frequencies, calculated from the magni-
tude of the displacement rather than from the real part. The pétterns are
almost identical, and are determined almost entirely by the imaginary
component.of the displacement.

There are no experimental data with which to compare the high-
frequency patterns. However, the low-frequency pattern shown in Fig. 10.7
is qualitatively the same as the one inferred by Manley & Johnstone (1974)
from thelr point measurements of eardrum displacement. The essential
features are (1) that the amplitudes of the manubrium are always less than
those of the neighbouring portions of the drum, and (2) that the over-all

displacement paximum occurs in the inferior region,

10.3.4 Drum displacement. The peak drum displacement of the model

at 100 Hz is 0.14 pm, which is to be compared to a value of 0.45 um measured
by Manley & Johnstone (1974).

10.3.5 Ratio of drum to malleolar displacement. The ratio E%%% at

100 Hz is 5.3 according to the model, compared to a range of about 2 to 9
measured by Manley & Johnstone.(see Section 12.3).
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Fig. 10.7. Calculated vibration patterns for guinea pig. Contours
represent real parts of complex displacements.
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6.5 kHz

7.5 kHz

8.5 kHz 9 kHz

Fig. 10.8. Calculated vibration patterns for guinea pig. Contours represent
the magnitudes of the complex displacements.
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10.4 Conclusions

The plane-membrane eardrum model presented here displays a number of
features similar, qualitatively at least, to those observed experimentally
in the cat and guinea pig by different experimental methods. There are also
diécrepancies. Some of these could no doubt be reduced or removed by
judicious adjustments of the parameters of the modei, few of which can be
predicted with confidence on the basis of independent experimental obser-—
vations; |

It is not to be expected, however, thatvthe plane-membrane hodel can
ever completely reproduce the actual behaviour of the eardrum. Quite apart
from the question of whether tension is really the dominant factor in
determining eardrum stiffness, the plane-membrane model does not attempt
to represent the true shape of the mammalian eardrum. For this reason I
have not felt it worthwhile to attempt parameter optimization with this
model.

The parameter values describing the mechanical properties of the
eardrum, namely the tension and resistance, were estimated in different ways

for the two species considered: on the basis of vibration-pattern complexity

"in the case of the cat, and on the basis of the impedance-f;equency curve in

ﬁhe case of the guinea pig. The values arrived at were also very different
for the two cases. This might be ascribed to species differences, or it
might be argued that further expérimentation with different parameter values
could resolve the differences. The discrepancy might also be due to a
fundamental inability of the model to predict both aspects (pattern complexity
and impedance curve) of eardrum behaviour, indicating that the features of
drum structure left out of this model (including shape, bending stiffness

and non-uniformity) are essential to its function.
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CHAPTER 11

DESCRIPTION OF SHELL MODELS

11.1 Introduction

This chapter describes the specific eardrum models used to obtain
the results presented in the next chapter. Section 11.2 concerns the
shapes of the annular ring, manubrium and pars flaccida, and the positions
of the radial fibres. The models for tne cat, guinea pig and human are
described. Section 11.3 discusses the curvature of the sides of the cone
formed by the eardrum. Section 11.4 discusses the question of whether the
finite-element subdivision is sufficiently fine.

The material properties used are those given in Chapters 2 to 4.

11.2 Basic Shape

The essentials of the geometry of the eardrum model are shown in
Fig. 11.1 for the cat. Fig. 1ll.la shows a view of the drum model in the
plane of the annulus: the outlines of the pars tensa, pars flaccida and
manubrium are shown. Also visible are lines corresponding approximately
to the orientations of the radial fibres of the drum. Fig. 11.1b is a
section through the manubrium, showing the way it points medially. These
two views define the model shape completely except for the drum curvature
which is discussed in the next section.

Fig. 11.2 shows the actual subdivision of the cat model into tri-~
angular finite elements. v

Fig. 11.3 to 11.6 present the models for the guinea pig and human,
in the same formats as Fig. 11.1 and 11.2.
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jrvmen 1 m

Fig. 11.1. Shape of shell model for cat. Part a is a plan view,
part b is a side view. Curvature parameter ¢ (Section 11.3) is 9.5.
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jyf 1 mm

Fig. 11.3. Shape of shell model for guinea pig. Curvature
parameter ¢ is 1.12. '
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Fig. 11.4. Subdivision of guinea-pig shell model.
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o DR

Fig. 11.5. Shape of shell model for man. Curvature
parameter ¢ is 1.12.
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Fig. 11.6. Subdivision of human shell model.
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11.3 Curvature

As discussed in Section 2.2.4, there are no good data available
to quantify the curvature of the sides of the eardrum. Helmholtz (1869)
presented a formula for the shape of the eardrum (Fig. 11.7a), but this
was based on a theoretical analysis of how the eardrum might function
(see Section 6.2) rather than on any quantitative observations of drum
shape. Kirikae (1960) suggested an equation of the form
a2

y =:ﬂx2 + a2 b

to describe the drum's shape. Such a curve can be matched quite well to
the measured shape. Its chief advantage over the equation given by
Helmholtz, apart from simplicity, is that it is flat at the centre (see
Fig. 11.7b), more reasonably representing the position and shape of the
manubrium. TFor the purposes of investigating the significance of the
curvature, however, the shape of the manubrium is not important, and from
the available data one cannot conclude that the drum itself is flattened
near the manubrium.

For the sake of simplicity, I have chosen to represent the curvature
of the sides of the drum using circular arcs. (Esser (1947) calculated that
one of the coefficients in his analysis changed by only 77 if circular arcs
were assumed instead of Helmholtz' curve.) The over-all degree of curva-
ture of the eardrum is specified in the models by a dimensionless constant

e. The radius of curvature of any particular radial fibre f is then given

by

where df is the straight-line distance between the ends of the fibre as
shown in Fig. 11.8. The circular arcs are taken to lie in vertical planes
(the plane of the tympanic‘ring being horizontal).

In the model for each species I have used for ¢ the smallest value

that does not result in any nodes of the model lying above the plane of
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Fig. 11.7. Two suggested forms for eardrum
curvature. Curve g is that of Helmholtz (1869), curve
b is that of Kirikae (1960). See text for discussiomn.
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tympanic ring

arcs.

tympanic ring—

manubrium

Fig. 11.8. Diagram illustrating radial fibres approximated by circular
The curvature parameter ¢ is 1.5 for this Figure. See text for discussion.
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the tympanic ring. For the particular geometries used here, these
minimum values turn out to be 0.93.for the cat, and 1.12 for both
guinea pig and human. Fig. 11.3b and 11.5b give an idea of what these
curvatures look like. They are similar to the curvatures found in the

actual eardrums. Note that the values of these lower limits are not

v physiologically meaningful: they are determined by the particular way

" in which I introduce the curvature into the model.

As pointed out above, in this model the minimum values for the
constant ¢ are about 1. There is obviously no upper limit, but the
curvature is practically gone by about ten, as demonstrated by the
essentially straight side shown in Fig. 11.1b (at a value of 9.5).

Fig. 11.9 is a perspective view of the model of the cat eardrum,

to give an idea of its over-all shape.

11.4 Adequacy of Subdivision

The eardrum models could be refined by using.more nodes, but each
node adds six degrees of freedom to the system, and the amounts of computer
time and storage spacé required are proportional to the square of the
number of degrees of freedom. The subdivisions shown above represent the
outlines of the eardrum quite well. Their weakest feature is that each
curved radial fibre ié approximated by only two (in the anterior region)
or three (in the posterior and inferior regions) straight-line segments.

One can estimate the effects of this‘approximation by looking at
Fig. 12.2. That Figure shows the contour lines calculated for the guinea-
pig shell model, which is symmetrical except for the use of two straight-
line segments per radial fibre in the anterior region, as opposed to
three in the posterior region. The posterior amplitudes are larger than
the anterior ones, but never by more than a factor of about two and
generally by much less. The contour lines are similar in the two halves

in that they extend upwards but do not form separate peaks.
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Fig. 11.9. Perspective view of the cat shell model.
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A more quantitative estimate of the effects of the limited numbers

of nodes was obtained by using three models of half of a guinea-pig ear-
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drum, with two, three and four line segments per radial fibre, respectively.

The resulting contour patterns are shown in Fig. 11.10, and all display the
characteristic inferior peak. The first contour line falls about half-way
down the manubrium in each case, indicating similar values for the ratio

peak . A secondary peak is present in part ¢ (four segments/fibre) but is
tip :
quite flat.

The actual value of peak drum displacement is about 10 dB higher
with three segments/fibre than with two, and only about 7 dB higher with
four than with three. In view of the uncertainties involved in determining
the physical parameters of the model, the subdivision used in obtaining the
results in the next chapter (equivalent to three segments/fibre) is

considered to be adequate for the present purposes.
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a b | C

2 segments/fibre 3 segments/fibre 4 segments/fibre

Fig. 11.10. Comparison of three shell models with different degrees of
refinement. See text for discussionmn.



\\/,

157

CHAPTER 12

RESULTS OF SHELL MODELS

12.1 1Introduction

This chapter presents the results of calculations using the shell
models described in the previous chapter. Sections 2 to 4 present results
for the cat, guinea pig and human, respectively. Apart from the general
shape of the contour lines, the two quantities to be compared between the
expe:imental and the calculated results are (1) the amplitude of the maxi-
mal drum displacement, and (2) the ratio of that displacement to the
displacement of the tip of the manubrium. The former is a measure of the
over-all displacement of the drum, and the latter is a measure of the
’coupling of the drum to the ossicles and of the degree of sound trans-
mission to the middle ear.

The parameter values used for Sections 12.2 to 12.4 are those
estimated in Chapters 2 to 4, without regard to the results of the displace-
ment calculations. No attempt has been made to find a set of parameter values
to match a particular set of experimental data exactly. The main reason is
that there is not yet enough information available to lead to a unique
choice for the "best" values, so the results of such a search would have
little meaning. To indicate the effects of changes in parémeter values,
Sections 12.5 to 12.9 present the results of varying several of fhe par-
ameters, including stiffness, Poisson's ratio, ossicular-hinge stiffness,
curvature;'and depth. Finally, Sections 12.10 to 12.13 explore the effects
of modifying some of the assumptions of the model, including those concern-
ing isotropy, type of boundary condition, and position of ossicular axis.
All of Sections 12.5 to 12.13 concentrate on one particular species, for
‘simplicity and clafity. The cat was chosen because the available displace-

ment data are better for this species than for any other.
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12.2 Displacements for Cat

Fig. 12.1 shows displacement contours calculated for the cat model
using the parameter values specified in Chapters 2 to 4. The vibration
pattérn is very similar to that observed experimentally by Tonndorf &
Khanna (1972): the drum displacements are greater than those of the manu-
brium, and there is an amplitude maximum in the posterior region. The
only qualitative difference between the calculated and experimental results
is that the latter show a small amplitude peak in the anterior region while
the former do not (although the displacements there are definitely greater
than on the manubrium).

As mentioned in the introduction to this chapter, the two quanti-
tative measures which I shall use to compare experimental and modelling
results are (1) the maximum drum displacement, and (2) the ratio of maximum
drum displacement to manubrial-tip displacement. Tonndorf & Khanna (1971a)
reported a maximal drum displacement of 1.5 um at 600 Hz and 111 dB SPL.
This is equivalent to 0.42 um at 100 dB SPL. (The frequency of 600 Hz is
low enough that the displacement will be practically the same as at 0 Hz.)
By comparison, the results presented in Fig. 12.1 show a maximal drum
displacement of 0.43 um at 100 dB SPL.v

Tonndorf & Khanna (1971a) report a ratio

of peak displacement
tip displacement
to 2.2 at low frequencies. Khanna & Tonndorf (1972a) show a value of about

equal

3. The computed results in Fig. 12.1 have a ratio equal to 2.4,

Note that the experimental results considered here were measured
with the middle-ear cavity closed, while the model as presently implemented
does not account for the effect of the middle-ear cavity, that is, it assumes
the cavity to be wide open. However, as discussed in Chapter 4 above, the
middle-ear cavities in the cat have little effect on the drum's vibration

since they are relatively large, and thus compliant.
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Fig. 12.1. Displacement contours for cat shell model.
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12.3 Displacements for Guinea Pig .

Fig. 12.2 shows a vibration pattern calculated with the guinea-pig
model. The pattern is very similar to the one observed by Manley &
Johnstone (1974), with the maximal drum displacement occurring below the
tip of the manubrium. The fact that the model results are asymmetrical,
in a way similar to the published contour plots of Manley & Johnstone, is
entirely an artifact of the model, as discussed in Section 11.4 above.

Manley & Johnstone reported an average (3 animals) manubrial-tip
displacement of 0.45 uym at 100 4B SPL at‘100 Hz, the lowest frequency
that they observed. (This measurement was taken with the bulla open, as
assumed in this model.) Since they were not using a holographic technique
one cannot derive precise values for the ratio R%%% from their data. How-
ever, they did measure displacements for three points on the drum below the
tip of the manubrium in the region of the displacement peak. From their
Fig. 1, it would appear that the largest of these three displacements is
about 19 dB, 5 dB and 8 dB above the displacement of the manubrial tip,
at 750 Hz, 1 kHz and 1.5 kHz, respectively. It is surprising that the
value at 750 Hz is so much different from those at 1 and 1.5 kHz, since
neither the manubrial-tip displacement (their Fig. 2) nor the over-all
volume displacement (Funnell, 1972) changes that drastically at frequencies
lower than 1 kHz. At any rate, the values 5 to 19 dB correspond to a range
of 1.8 to 9 for the ratio E%%% .

By comparison with the above experimental data, the model results of
Fig. 12.2 show a manubrial tip displacement of 1.1 um and a ratio E%%%
of 3.2,

12.4 Displacements for Human

Fig. 12.3 shows the displacement contours calculated using the model
for the human eardrum. Again, the contours are qualitatively similar to
experimental results.

Tonndorf & Khanna_(1972) suggested that their results at about 1 kHz

160
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Fig. 12.2. Displacement contours for guinea-pig shell model.
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Fig. 12.3. Displacement contours for human shell model.
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be taken asvrepresentative of lower-frequency displacements, because of
post-mortem changes at the low frequencies. As values for comparison
with the model, therefore, I shall take the figure of 0.19 um for malleolar-
tip displacement (at 996 Hz, 105 dB SPL; their Fig. 3), and the figure of
3.5 for the ratio B%%% (their Fig. 4). This corresponds to a peak drum
displacement of 0.37 ym at 100 dB SPL.

By comparison, the results of Fig. 12.3 show a peak displacement
of 0.47 um and a ratio 2%%5. of 2.2, |

As in the case of the cat, the experimental data here were obtained
with closed middle-ear cavities while the model assumes them to be open.

Here again, however, the human cavities are relativeiy large and thus have

little effect, especially at low frequencies.

12.5 Variation of Drum Stiffness

The Young's modulus of 2 x 108 used here is based on an experimental
result of Békésy, as discussed in Chapter 3. The figure is not necessarily
exactly correct, but it is probably in the right range. I have therefore
investigated variations of it only within a factor of two on either side.
The results are presented in Fig. 12.4. The peak displacement decreases
from 6.70 um at 108 dyn,cm_z, to 0.25 um at 4 x 108 dyn cm—z. The ratio

B%%% decreases from 2.6 to 2.3 over the same range.

12.6 Variation of Poisson's Ratio

163

As stated in Section 12.2 above, using a Poisson's ratio of 0.3 gave a

peak displacement of 0.43 ym and a ratio-%ﬁﬁ% of 2.4, Reducing Poisson's ratio

to 0.0 changes the peak displacement to 0.44 pym, and the ratio to 2.2. A
Poisson's ratio of 0.5 gives a peak displacement of 0.40 ym and a ratio of 2

.5.

It can thus be seen that the value adopted for Poisson's ratio is not critical:

varying it from O to 3 decreases the peak amplitude by about 107 and increases

the ratio Igﬁgg‘by about 147.
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12.7 Variation of Ossicular-Hinge Stiffness

Fig. 12.5 shows the effects of variations of the stiffness of the
ossicular hinge. As expected, increasing the stiffness decreases the
amplitude of the drum's displacements: most of the decrease occurs in
the range 0 to 106, and above about 4 x 106 further increases have little
effect since the manubrium's movements are by then too small to affect
the rest of the drum much. The ratio R%%% is relatively unaffected by
the hinge stiffness up to about 106, indicating that the shape of the
vibration pattern is not changing much. Above that figure, the ratio
starts to increase approximately in proportion to the stiffness, since
the peak drum displacement is no longer changing significantly and the
manubrial displacement is determined almost entirely by the stiffness of
the ossicles.

Fig. 12.6 shows some examples of the vibration patterns for various
values of hinge stiffness. The sequence shows how the manubrium moves
less and less compared to the drum as the stiffness increases.

Note that at the highest values of hinge stiffness used here, the
manubrium started to become bent because of the crude way in which the
stiffness is introduced into the model (as discussed in Section 8.7).
Fig. 12.7 shows the degree of distortion at two high stiffness values.
The distortion was negligible at lower stiffnesses, and even that shown
in the Figure is unlikely to cause very great errors in the vibration
patterns. It does not matter that the distortion would become unaccept-
able at much hiéher values of hinge stiffness since such values would not
be physiologically reasonable anyways, as evidenced by the fact that even
in the range used here the ratio R%%% has already become larger than
that observed experimentally. If one wished to simulate partially fixed
ossicles oﬁe would have to do something about the method of introducing
the hinge stiffness; fully fixed ossicles would be no problem since one

could simply force all manubrial displacements to zero.
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a VA

Fig. 12.7. Distortion of manubrium due to high ossicular
stiffness. Part q is a plan view of the manubrium, for reference.
Part b represents the displacement (normalized) of the manubrium,
and indicates a slight distortion when the ossicular stiffness is
10% dyn ew L. Part e indicates greater distortion when the stiff-

ness is 4x108 dyn cm—l.
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12.8 Variation of Curvature

Fig. 12.8 shows the effects of varying the curvature of the drum
over a range of about 10:1., The lower end of the range of the curvature
parameter ¢, namely 0.93, is the smallest value permitted (see Section
11.3). The largest value of ¢ , namely 9.5, defines a condition of almost
straight sides. Over this range the peak drum displacement varies from
0.43 ym to 0.59 um, with a minimum of 0.35 ym. The total variation is
less than a factor of two. It can thus be seen that the curvature is
not a very critical parameter in determining drum displacements.

The increase of peak displacement with increasing radius of curva-
ture is expected on the basis of normal shell behaviour: a nearly flat
shell cannot use its in-plane stiffness to resist transverse loads, and
its bending stiffness will be low if the shell is thin. The increase in
peak displacement at the smallest radii of curvature may be due to the
fact that the drum is then better able to apply a transverse force to the
manubrium. This increase in coupling of the air'pressure to the manubrium
is reflected in the fact that the ratio R%%% decreases monotonically,
and quite rapidly, with decreasing radius of curvature, as shown in Fig.
12.8b. Fig. 12.9 more clearly shows that the drum's ability to move the
ossicles in response to air pressure decreases with increasing radius of
curvature, that is, with decreasing curvature.

Fig. 12.10 shows a sequence of vibration patterns for various degrees
of curvature. Note that as the radius of curvature increases, the relative
displacement of the manubrium decreases, as pointed out above, and also the
relative displacement of the anterior region increases until a separate

peak is formed, as found in experimental results.
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Fig. 12.10.

Displacement contours for six values of eardrum
curvature parameter c.
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12.9 Variation of Depth of Comne

The previous section showed that the non-zero curvature of the
sides of the cone formed by the eardrum could aid in transmitting sound
to the ossicles. One might also wonder if the conical shape itself has
some functional significance. Fig. 12.11 shows the effects on manubrial
displacement of changing the depth of the cone. This was done by scaling
the z-coordinates of each point in the model by a factor called the |
"relative depth". Note that the circular arcs formed by the radial fibres
become elliptical under this operationm.

The Figure shows both the case of large curvature (¢ = 0.93) and the
case of practically no curvature (¢ = 9.5). In both situations, increasing
the depth of the cone reduces the displacement of the manubrium, that is,
reduces the ability of a given sound-pressure level to move the ossicles.
This presumably is because the deeper conical shapes impart greater stiff-~
ness to the eardrum, just as argued (in favour of the conical shape) by
Békésy in connection with his hinged-plate model (see Sectiom 6.3 above).

It would thus appear that the conical shape is disadvantageous,
assuming that the eardrum actually functions as modelled here. One might
speculate, however, that the conical shape provides an "adequate" middle-
ear sensitivity while permitting low eardrum mass, and thus good high-
frequency response. If the drum were flat, or a very shallow cone, then
a given degree of sensitivity would require a stiffer (and thus héavier)
drum than if it were a deeper cone. As mentioned in Section 6.5 above,
Gran (1968) found that a stiffness of 60 to 250 times the true value was

required to get reasonable displacements with a plane-plate model. -
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Fig. 12.11., Effects of variation of relative depth of
cone formed by eardrum, for two values of the eardrum curvature
’ parameter c.
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12,10 Effect of Anisotropy

~ Since the model is quite successful using isotropic material
properties, it has not been necessary to introduce anisotropy, and it
does not seem worthwhile at the moment to do a detailed study of the
effects of anisotropy in view of the number of experimental questibns
still unresolved concerning eardrum properties and behaviour. However,
this section presents a single example of displacements calculated with
an anisotropic model, to give an idea of what may be expected.

In line with the assumptions of Helmholtz and Esser (see Section
6.2), the radial fibres have been assumed to be much less extensible than
the circular fibres. 1In particular, the Young's modulus in the radial
direction (as defined by the element boundaries shown in Fig. 11.1) has
been left at the value of 2 x 108 dyn cm'-2 used before, while the Young's
modulus in the perpendicular direction (in each element) has been reduced
to 106 dyn cm_z. The two Poisson's ratios, and the shear modulus, have
been set to zero, equivalent to assuming that the rédial fibres slide
over one another without'lateral interaction. This assumption is open
to question, but there are no experimental data available to decide the
issue.

The vibration pattern shown in Fig. 12.12 is basically the same
as those calculated using isotropic material properties, but the peak
drum displacement, 1.3 um,.is about three times higher (ef. 0.43 um for
Fig. 12.1). This is not surprising since the overall stiffness of the
drum has been decreased. The ratio peak is about 2.7, almost the same

tip
as the value of 2.4 in Fig. 12.1; the manubrial-tip displacement, 0.49 um,

is more than 2.7 times the value calculated for isotropic properties. This

indicates the drum would be more effective in transmitting vibrations to
the ossicles if it were anisotropic in the way described here. This
expectation, of course, was what prompted Helmholtz' original hypothesis
that the circular fibres were much more extensible than the radial fibres:
the latter are in an ideal position to transmit forces to the manubrium,

while the former can only interfere with this action.
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Fig. 12.12. Displacement contours calculated using
anisotropic material properties.
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12.11 Boundary Conditions around Ring

The model results presented so far have assumed that the drum is
fully clamped around its periphery. To determine the importance of this
assumption, I simulated a condition identical to that presented in Fig. 12.1
except that the boundary conditions around the tympanic ring were changed
to the simply supported type. The resultant vibration pattern is almost
the same as Fig. 12.1. The peak drum displacement becomes 0.45 um instead
of 0.43 uﬁ, and the ratio peak remains the same at 2.4. Evidently it does

tip
not make much difference what type of boundary condition is assumed.

12.12 BoundaryConditions along Manubrium

The model also assumes that the drum is fully clamped to thé'manu-
brium. One cannot change this assumption simpl& by changing a boundary
condition: one would have to insert a small flexible element between the
drum and the manubrium in order to model a support of the simple type.

It is not worth doing so, however. Especially considering the results of
the previous section, it seems very unlikely that the change would make a

significant difference in the calculated vibration pattern and amplitude.

12.13 Position of aAxis

As implemented at the moment, the model is not suitable for any
definition of the position of the ossicular axis other than through the
upper end of the manubrium. It is well known, however, that the axis
actually lies higher. The only reasonably straight-forward way of estimating
the seriousness of this discrepancy with the present model is to remove the
boundary condition which specifies that the upper end of the manubrium is
fixed, and then to see where the axis falls naturally and how the displace-

ments are affected. Fig. 12.13 shows the results for two different values
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Fig. 12.13. Effects of removing the constraints on the axis of rotation
for two values of ossicular stiffness: 0 (a) and 0.3x10® dyn cm~! (b). In each
case, the displacement contours on the left are for the axis constrained as
usual, while those on the right are for no constraint on the axis. See text

for discussion.
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of hinge stiffness. The left~hand Figure in part a shows the vibration
pattern with the axis defined normally, for zero hinge stiffness. The
right-hand figure shows the pattern with the axis undefined. It can be
seen that the pattern is considerably changed, although it‘still shows

the basic feature of a posterior amplitude peak. (It also shows a smaller
anterior peak similar to the one present in experimental data.) The dis~
placement of the lower tip of the manubrium is actually slightly smaller
than that of the upper end, indicating that the "axis" is a considerable
distance below the drum, which is obviously not reasonable. In spite of
these differences, however, the actual peak drum displacement is the same,
0.61 uym, in both cases. Part b of the figufe shows a similar situation
when the hinge stiffness is set to 0.3 x 106. Again, in spite of differ-
enceé in the vibration pattern, the peak displacement is not drastically
affected: in this case it is reduced from 0.43 um to 0.34 um. These
results suggest that, although it would certainly be desirable to improve
the representation of the axis, the displacement values calculated with

the present model are probably not too far wrong.

12.14 Conclusions

Using physiologically reasonable parameter values, the shell models
for all three species yielded results quite close to previous experimental
findings. On this basis, one can conclude that presently available experi-

mental evidence is consistent with the hypothesis that the eardrum is

basically equivalent to an isotropic thin curved shell. It is not necessary

at this time to postulate either resting tension in the drum, or anisotropy

(that is, differences in properties between the radial and circular fibres).
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CHAPTER 13

CONCLUSIONS AND FUTURE DEVELOPMENTS

13.1 Conclusions

13.1.1 Summary. The work reported here consists of a theoretical study
of eardrum vibrations. No new experimental results are presented, but pre-
viously published results are reviewed critically and in some cases reinter-
preted. Available data on the eardrum and eardrum vibrations are then used
in modelling the system. Attention is restricted to mammalian eardrums

specialized to receive air-conducted sounds.

13.1.2 Major original contributions. The following items constitute the

major original contributions of this work:

(1) the first application of the finite-element method to study of the
eardrum;

(2) the demonstration, on the basis of a review and reinterpretation of
the literature, that the widely accepted observations of Békésy concerning
eardrum vibrations were in fact anomalous;

(3) the first theoretical estimate of the effective moments of inertia of
the ossicular chains of man, cat and guinea pig, based on simplified repre-
sentations of their geometry;

(4) the demonstration that the observed vibration patterns of the eardrum
do not necessarily involve any lever action on its part; and

(5) the presentation of a new hypothesis concerning eardrum function.

~ These points are discussed in more detail in the following sectiomns.

13.1.3 Introduction of finite-element method. This work represents the

first use of the finite-element method for the study of the eardrum. This
application has involved the development of the procedures discussed in
Sections 8.7 to 8.9 for the treatment of particular features of the eardrum,

namely, the presence of a rigid hinged rod in the vibrating surface, the
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exlstence of reactive forces on this rod, and the presence of closed air

cavities behind the drum.

13.1.4 Review of structure and function. Perhaps the most important

single result of the review in Chapters 2 to 5 is the recognition that the

vobservétion of a hinged-plate mode of eardrum vibration was unique to

Békésy. However, the conflict with other observations has been tempered by
my reinterpretation of his published contour plot (Section 5.2.5). The data
of Dahmann have also been reinterpreted (Section 5.2.4).

A useful procedure is introduced in Section 4.5 for the estimation of
ossicular moments of inertia on the basis of available data.

The most overwhelming impression produced by this review is that much
more work is fequired to measure and describe eardrum properties and behaviour

properly. Some suggestions for such work are presented in Section 13.2.1.

13.1.5 Simulation of simple models. The models presented in Chapters 9 to

12 do not embody the actual complexity of the eardrum, but they do show that
the main features of observed eardrum vibrations can be easily explained. In
particular, the plane-membrane model demonstrates quantitatively that the
low-frequency vibration pattern of the eardrum (with smaller displacements

at the manubrium than elsewhere) does not necessarily involve any lever action

on the part of the eardrum.

13.1.6 Presentation of a new hypothesis. The success of the shell model

presented in Chapters 11 and 12 indicates that the essential mechanical function

of the eardrum requires neither resting tensions nor special anisotropies.

13.2 Future Developments

13.2.1 Experimental. More information is required on the anatomy of the

eardrum. Specifically, more quantitative data are needed to describe eardrum

thickness, and the distribution and paths of the fibres. Such research could
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be a very useful application of interactive computerized image processing,
particularly in tracing fibre paths over long distances and in large numbers.
More work is also required to define the dependence of eardrum

mechanical properties on position, direction and frequency. Techniques

should be used which can identify the linear ranges of the variables measﬁred,
and which can quantify the viscoelastic properties of the eardrum. Particulaf
mention should be made of recent techniques for performing mechanical measure-
ments on very small samples. Furukawa et al. (1974) examined individual wood
fibres under an electron microscope; these fibres were 30 to 50 ym in diameter
and a few mm long, and had stiffnesses and ultimate strengths similar to
collagen fibres. With some loss of resolution light microscopy can be used
(Page et al.,1972). (Even 15 years ago, Morgan (1960) reported averaged stress-—
strain curves for collagen fibres with diameters in the range of 60 to 180 um
and lengths of 6 mm.) With these methods one might be able to characterize
very small sections of the eardrum, perhaps even separating the radial and
circular layers.

As mentioned in Section 2.2.4 abbve, Khanna & Tonndorf (1975) have started
to apply moiré topography to measurements of the shape of the eardrum.
Quantitative and comparative shape data will be important in modelling the
eardrum. At the moment these measurements must be static in nature, since they
require the use of a casting. With further developments of this method, one
possibly could do dynamic measurements of the effects of slow air-pressure
changes and of middle-ear-muscle contractions. Indeed, the recent development
of such things as 4.5-mm endoscopes incorporating colour-television cameras
(Electronies 48(1): 55, 1975) raises hopes of such measurements on waking
patients. Note that computerized image processing could also be useful in
interpreting the moiré contour lines.

Further developments are also possible for the holographic method of

measuring vibration patterns, such as the addition of the ability to measure

phase information (Khanna & Tonndorf, 1972b). It is also possible to adapt
the method to measure amplitudes intermediate between those of conventional -

holography and those of moiré topography (Der et al., 1974). Dragsten et al.
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(1974) have described a technique that they call "optical heterodyne
spectroscopy'. It is extremely sensitive (down to 0.0l nm) and has a

wide dynamic range (up to about 50 nm), and can automatically compensate
for small body movements during measurements iz vivo. Unfortumately it
involves point displacement measurements rather than contour-line detection,
but the laser beam can relatively easily be scanned across the structure
under observation; it also requires an averaging time of a few seconds per
point. The»observation of vibration patterns in real time was discussed by
Khanna et al. (1973), who used a modification of their laser holographic
technique.

Apart from the development of new measurement methods, further work is
needed to measure eardrum vibration patterns in different species, and after
various interventions in the middle ear such as interruption or fixing of
the ossicular chain. Such data would permit much more conclusive modelling

of the eardrum and of the middle ear as a whole.

13.2.2 Modelling. Apart from improvements in the models based on new
experimental data, there are also a number of improvements that can be made
in the modelling procedures themselves. First of all, the shell-model pro-
gramme can be made more efficient by incorporating some of the methodsvused
in the membrane programme as discussed in Sections 8.5, 8.7 and 8.8. Further-
more, the shell programme should be extended to handle frequency effects and
damping as is done in the membrane programme. It might also be worthwhile
to add the effects of radiation impedance_to the model, using extensions of
the techniques of Hunt et al. (1974, 1975).

The actual elements used in the shell model could be improved. A number
of curved-shell finite elements have been developed which would permit a more
faithful representation of the shape of the eardrum than is possible using
flat elements.

The shell elements may be refined by considering them as being composed
of a number of laminae instead of a single uniform layer. One may also attempt

to model the fact that the radial and circular layers are composed of arrays
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of fibres embedded in ground substance; Chamis & Sendeckyj (1968) and
Adams (1974b) have reviewed this topic. Howéver, both of these areas for
improvement require further exberimental data before realizing their full
worth.

As mentioned in Section fl6.2, extension of the models to handle large
displacements would permit the modelling of the effects of large static
pressure changes and of middle-ear-muscle éontractions. It would also permit
the study of resting tonus of the muscles. This change would increase the
computation times drastically, since iterative techniques would be required,
but will become very desirable if experimental data become available concern-
ing vibration patterns under these conditions.

Finally, it would be useful if a method could be found of calculating the
frequency response of the model's acoustical impedance without having to invert
the full system matrix at each frequency point. As mentioned in Section 8.10,
one cannot use the usual eigenvalue method because of the frequency-dependent
elements in the matrix. Gupta (1974) has shown an effiéient way of ‘including
damping terms in the eigenvalue problem, but this does not overcome the
difficulties introduced by the effects of the ossicular chain and of the air

cavities.

13.2.3 Clinical applications. The immediate objectives of this work do

not include the production of clinically useful information, since the models
are not yet adequate. It should be kept in mind, however, that this work
should lead to significant advances in two areas: interpretation of the
results of impedance audiometry and tympanometry, and the evaluation of
certain types of corrective middle-ear surgery.

Impedance audiometry and tympanometry have been found to be very useful
for certain types of diagnosis. Bel et al. (1975), for example, have found
that impedance measurements are "much more sensitive than pute-tone or speech
audiometry" for the early detection of otosclerosis. On the other hand, the
results are greatly affected by the condition of the eardrum, which may mask
pathology elsewhere in the middle ear. This is particularly true at higher
frequencies (Alberti & Jerger, 1974; Feldman, 1974), which is one reason why
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clinical impedance audiometry has generally been restricted to frequencies
of a few hundred Hertz. The fact that impedance measurements are strongly
affected by even slight eardrum abnormalities also hinders its use for
screening, since these abnormalities may be the results of completely healed
disease processes, or even of congenital abnormalities, that have little or
no effect on hearing. The ability to simulate eardrum behaviour reliably
might make it possible to correct for these factors.

A second potential application of good eardrum models, and of a con- -
sequently good understanding of eardrum mechanics, is the evaluation of
methods of eardrum repair. Recent work has suggested that the eardrum
contributes actively to the effective lever ratio of the middle ear. If
this is true, then it might be important to replace the functional elements
involved when repairing the drum. In particular, it might be important to
reproduce the peculiar arrangement of highly organized radial and circular
fibres. Current methods of repairing drum perforations do not accomplish this,
but if it wereworthwhile recent methods of reconstituting collagen films
(Chvapil et al., 1973) might be developed to that extent. Admittedly the
appareﬁt contribution of the eardrum to the middle-ear lever action is small,
but even héaring losses of only a few decibels can affect eaf1§?1earﬂing

(Brooks, 1973) and speech discrimination.
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Appendix 1

ANALYSIS OF SLIT BEHAVIOUR IN A TENSE EARDRUM

In this Appendix I shall present some very rough calculations intended
to give some idea of how much spreading can be expected in a slit of the type
used by Kirikae (1960), as discussed in Section 3.6 above. The fundamental
assumption is that the resting tension in the eardrum is of the same order as
could be supplied by the tensor tympani.

Fig. Al.1 is a schematic cross-section of the eardrum. A force ft exerted
by the tensor tympani will be equivalent to a force f& at the‘umbo. The ratio
of fﬁ to f% will be taken to be r. This force must be balanced by the tension
acting around the circumference ¢, which has a vertical component of I sin O.
Thus,

-fu =71 ft =T ¢ sin 0 ,

or r ft
T =

¢ sino

The radial fibres have length % and stiffness E, and the thickness of the drum

'is t. Thus the tension T imposes a total stretch on the radial fibres equal

to
s = strain - length ==§£%§§§ )
_.I  _ r g
Et*  Etc sin 0 ft :

I1f we take, for example, fi =10 gm = 10% dyn; »r = 3; ¢ = 0.4 cm; E =
2x108 dyn cm—z; t =50 im; ¢ = 2.6 cm; and @ = 20°; then the stretch,
which will be released by the slit, is

s = 22.5 um.
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Fig. Al.1l. Schematic cross~section of eardrum, defining notation
used In analyzing slit behaviour.
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Appéndix 2

INTERPRETATION OF DAHMANN'S DEFLECTION DATA

This Appendix discusses a method for estimating the eardrum displacement
profile corresponding to the mirror-deflection data of Dahmann (1929, 1930)
shown in Fig. 5.2. The basic procédure is to assume that the shape of the
profile can be expressed in terms of two cubic polynomials. The profile on
the left-hand side is represented by

y =y, (x) = ax+ a2x2 + a3x? s
and that on the right by
y = yz(x) = 54(w—x) + a5(w—x)2 + a6(w—x)3 ’

where w is the width of the drum, as shown in Fig. A2.1. Note that each
polynomial is equal to zero at its respective drum boundary.

The slopes of these polynomials aré specified at four points by the
measured mirror deflections, the slopes being taken as equal to the lengths
of the streaks in Dahmann's Figure. I have used the following values for the

positions and slopes of the mirrors:

Mirror 7 X = 0.15 mm s = 1.7 mm
6 1.7 0.6
2 4.4 1.0
3 6.15 -2.1

These data represent four constraints on the values of the six constants as.
“A fifth constraint is the fact that the displacements of the two edges of the
‘manubrium must be eqéal; that is, yJanz) = yzcgnz), where x ;, and X o, repre-
senting the edges of the manubrium, have the values 2.35 mm and 3.0 mm,

" respectively.

A sixth constraint is obtained by deciding to reduce the left-hand poly-
nomial to a quadratic, that is, by setting az = 0. This can be justified by
the fact that the left-hand side is narrower than the right.

The combination of these constraints leads to a system of six linear
algebraic equations in the Q. The solutions for various combinations of the

signs of Sg and 8, are shown in Fig. 5.2.
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//,—manubrium

Y T ! X
w=6.35 mm

Fig. A2.1. Definition of notation for analysis of Dahmann's data.
The abscissa represents distance from one edge of the eardrum to the
other, along a horizontal line through the umbo; w is the width of the
drum. The ordinate represents eardrum displacement.
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