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1. INTRODUCTION 

Hearing  loss  is  a  relatively  common  disorder. 
Detailed  analyses  of  the  mechanical  and  acoustical 
properties  of  the  middle  ear have significant  clinical 
implications. The finite-element method is a powerful 
tool,  often  used for  such analysis.  A comprehensive 
and  reliable  3-D  finite-element  model  of  the  human 
middle ear can provide a better understanding of the 
biomechanics of its many interrelated structures. 

The  middle  ear  extends  from  the  eardrum 
(tympanic  membrane)  to  the  oval  window  (the 
interface with the inner ear) as shown in Fig. 1. The 
air-filled  cavity  contains  three  bones  (malleus,  incus 
and  stapes),  two  muscles  (tensor  tympani  and 
stapedius) and several ligaments and other structures. 
The  3-D geometries  of  finite-element  models  of  the 
middle  ear  are  often  based  on  microscopic  X-ray 
computed tomography (microCT) or magnetic  reson-
ance  microscopy  (MRM).  Currently,  these  imaging 
modalities have limited resolution in comparison with 
the  size  of  the  middle-ear  so  it  is  not  possible  to 
distinguish details like the different tissue types in the 
ear canal, the fine details of the middle-ear ligaments 
and  joints,  and  the  distinct  calcified  and  uncalcified 
components of the joint cartilage. Histological images 
offer much better image contrast  and resolution. For 
example,  the histological image of a middle-ear joint 
shown in Fig. 2 clearly shows details such as the joint 
capsule and the presence of synovial fluid within the 
joint.  Such  details  are  visible  only  in  histological 
images  and  are  important  for  realistic  modelling  of 
middle-ear mechanics and acoustics. 

Serial histological sections have sometimes been 
used as the basis of 3-D finite-element models (e.g., 
Funnell et al., 1992; Warrick and Funnell, 1998; Sun et 
al., 2002) but serious spatial misalignments are intro-
duced  at  the  time  of  histological  tissue  processing. 
Registration algorithms are often employed to correct 
these  distortions.  Linear  transformations  have  been 
used  in  the  past  to  register,  or  align,  middle-ear 
images with one another, but this cannot correct for all 
of  the  distortions.  Non-linear  registration  techniques 
also exist and one such algorithm has been used for 
serial  histological  images  of  the  brain  (Chakravarty 

et al., 2006). The application of that non-linear warping 
algorithm to human middle-ear  histological  data  was 
introduced in a previous paper (Nambiar et al., 2007). 
In  this  paper,  we discuss tuning of  the algorithm for 
application  to  the  middle  ear  and  present  further 
results.

Fig. 1: Anatomy of the human ear (anterior view).

 Fig. 2: Histological section of a middle-ear joint.



2. MATERIALS AND METHODS

2.1 Histological data acquisition

The  histological  data  set  for  an  adult  human 
middle ear was acquired from C. Northrop (Temporal 
Bone Foundation, Boston). The histological block was 
cut into 20-μm-thick sections and every tenth slice was 
stained with hæmatoxylin and eosin to yield a total of 
56  slices.  Each  slice  was  digitized  using  a  slide 
scanner to form images of size 3644×2152 pixels. The 
images were then downsampled by a factor of 4 for 
improved processing speed. 

2.2 Segmentation

The  contours  of  the  structures  of  interest  were 
semi-automatically  identified  using  Fie,  a  locally 
developed  programme  (http://audilab.bmed.mcgill.ca/ 
~funnell/AudiLab/sw/fie.html).

2.3 Non-linear registration algorithm

The  non-linear  algorithm  employed  here  is  a 
variant  of  the  Automatic  Nonlinear  Image  Matching 
and Anatomical Labelling (ANIMAL) algorithm (Collins 
and Evans, 1997). The algorithm tries to maximize the 
slice-to-slice (source-to-target) anatomical consistency 
between adjacent slices in order to achieve global 3-D 
consistency.  The  ANIMAL  algorithm  defines  a  2-D 
regular  lattice  of  control  nodes  and  computes  a 
deformation vector for each node that maximizes the 
correlation ratio for the local intensity neighbourhood 
centred at each of these nodes. The non-linear spatial 
registration transformation is computed in a hierarch-
ical fashion: deformations are first estimated on slices 
blurred with a Gaussian kernel having a large full width 
at  half  maximum  (FWHM)  and  then  the  transform-
ations are further refined by estimating deformations 
on slices blurred with Gaussian kernels having smaller 
FWHM’s.  This blurring is done three times. For each 
FWHM the ANIMAL algorithm calculates the deform-
ation vector iteratively, with each iteration consisting of 
two steps: the first step involves calculation of a local 
translation  for  each  node  and  the  second  is  a 
smoothing  step  that  ensures  the  continuity  of  the 
deformation  fields  and  accounts  for  any  stretching, 
tearing  or  overlap  of  the  data. The  non-linear 
transformations are represented by these deformation 
fields, which are defined to be locally translational. The 
overall optimization is thus achieved by amalgamation 
of all the local optimizations computed at each lattice 
point. 

The non-linear transformation can be controlled by 
three parameters: the similarity cost ratio, the stiffness 
and the  weight. These parameters play an important 
role in the transformation estimation at each level of 

blurring of the source and target images. The similarity 
cost ratio balances the similarity measure and the cost 
function.  It  is  constant  for  all  nodes  defined  by  the 
ANIMAL  algorithm  at  each  resolution  step.  The 
stiffness  parameter  directly  affects  the nature  of  the 
deformation  field  calculated  at  each  node.  Large 
values  for  the  stiffness  parameter  yield  smooth 
deformation  fields  but  may  over-smooth  local 
translations.  Smaller  stiffness  values  permit  local 
translations  but  the  estimated  deformation  could  be 
discontinuous, which may cause tearing or overlapping 
of the  image.  The  non-linear  transformation  is 
computed over a  fixed number of iterations for each 
resolution  step,  and  in  each  of  these  iterations  a 
fraction of the local translation estimate is added to the 
current iteration according to the value of the  weight  
parameter.

The three parameters  were initially  optimized by 
Chakravarty  et  al.  (2006)  for  certain  areas  of  the 
human  brain  (basal  ganglia  and  thalamus).  An 
exhaustive-search strategy was employed to minimize 
the mean chamfer distance between the transformed 
source contour  data  and the target  contour  data.  In 
this study, the values of these optimization parameters 
were altered in a trial and error fashion such that the 
warping quality  was enhanced over a set  of  sample 
slices. 

The  image-driven  transformation  thus  obtained 
can be applied to the coördinates of the segmented 
contours,  the  surface triangulation  of  which yields  a 
3-D finite-element model.

3. RESULTS

Here we present  preliminary results  obtained by 
the application of the above algorithm. The final values 
of  the  optimization  parameters  described  in  Section 
2.3 are shown in Table 1. In our study, the values of 
the parameters for the first two steps of  blurring are 
equal to those estimated by Chakravarty et al.(2006). 
For the final step, a finer resolution (Gaussian kernel 
FWHM = 4 pixels) was used along with an increase in 
the stiffness and weight values.

Table 1: Parameters used for each of the resolutions

FWHM (in 
pixels)

Lattice 
diameter 
(in pixels)

Similarity Stiffness Weight

50 150 0.95 0.6 1.3
25 75 0.9 0.6 1.3
4 20 0.9 1 1

Sample  histological  images  are  shown  in  the 
figures  to  illustrate  the  registration  principle.  Fig.  3 
shows the source slice,  which is registered onto the 



Fig 3: Source slice of human temporal bone.

Fig 4: Target slice of human temporal bone.

Fig 5: Source slice after registration.

Fig 6:Registered source slice (in green) superimposed 
onto target slice (in red). 

target slice (Fig. 4). Fig. 5 shows the source slice after 
registration.  Some  of  the  anatomical  parts  of  the 
temporal  bone  are  marked  in  the  figures:  (a) 
semicircular  canal,  (b)  stapes  footplate,  (c)  cochlea, 
(d) malleus, and (e) external ear canal. Fig. 6  shows 
the source  slice,  after  registration,  superimposed on 
the  target  slice.  The  geometries  of  the  middle-ear 
substructures that are indicated by markers ‘a’, ‘b’, ‘c’ 
and ‘d’ are seen to have been successfully registered 
onto  the  target.  However,  the  external  ear  canal 
(marker ‘e’) is badly distorted after registration. This is 
because the shape of the canal in the target slice is 
very  different  from  that  in  the  source  slice.  Certain 
artefacts in the areas indicated by markers ‘a’ and ‘c’ 
were clearly visible in the registered slice when values 
different from those given in Table 1 were used.

4. CONCLUSION

The results obtained from preliminary application 
of the registration algorithm indicate that good-quality 
alignments  can  be  obtained  for  the  structures  of 
interest.  Our  future  work  will  include  a  quantitative 
approach to choosing the optimization parameters that 
control  the quality of the 2-D slice-to-slice algorithm. 
Systematic parameter optimization may result in more 
successful  registrations,  leading  to  more  accurate 
geometric models.
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