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Abstract. Image guidance of ear surgery would enable an ENT surgeon
to navigate about the components of the middle and inner ear, but the
elaboration of anatomical models for this application is limited by the
resolution of CT and its inability to distinguish among soft tissues. As a
result, it is impossible to identify manually some tissues in clinical data,
while visible tissues can only be identified with significant overhead.
We propose a method for producing patient-specific description of the
middle and inner ear on the basis of the minimally supervised registra-
tion of a high resolution model elaborated from micro-MR to patient
CT, where the transformation among the model and the patient data
is determined in a component-wise coarse-to-fine strategy. The first two
stages feature a rough alignment on the basis of a few homologous point
pairs, followed by a refinement based on a global affine transformation
determined by mutual information. The middle stage involves a piece-
wise affine registration where each local affine transformation is given the
global transformation as a starting point and is determined by mutual
information over an appropriate anatomical mask. The final registration
of each component is produced by mutual information-based thin-plate
splines, whose anchor points overlap the affine-transformed mask.

1 Introduction

Image guidance of ear surgery would enable an ENT surgeon to navigate about
the components of the middle and inner ear, and in particular avoid critical tis-
sues such as the facial nerve, but the elaboration of anatomical models for this
application is limited by the resolution of CT and its inability to distinguish
among soft tissues. As a result, the tissues that are visible can only be identified
with significant overhead, and the descriptiveness of the resulting models is lim-
ited by the relatively coarse voxel sampling, even with state-of-the-art clinical
CT, in relation to the scale of the components of the anatomy. Moreover, it is
impossible to identify manually some of the relevant tissues in routine clinical
data, such as the chorda tympani nerve.
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(a) (b)

Fig. 1. Illustration of ear anatomy
and surgery: (a) outer, middle and
inner ear anatomy, reproduced with
permission from T.C. Hain [1];(b)
post-auricular incision.

(b)

(a) (c) (d)

Fig. 2. High resolution ear model derived from micro-
MR data: (a) model as it appears in interactive web-
site; micro-MR data: (b) raw data and (c) intensity
non-uniformity corrected data; (d) orthogonal planes
depiction of micro-MR data overlaid with ear model.

Ear surgery typically begins with a post-auricular incision, as shown in fig-
ure 1, which may lead to the repair of a tympanic membrane, the replacement of
ossicular bones by a prosthesis, the resection of a choleastoma, or a combination
of these interventions. A related intervention involves drilling the mastoid bone,
behind the ear, and resecting a choleastoma present in it.

The presence of pathology complicates the application of statistical shape
models [2] in patient-specific segmentation, as the notion of an average shape
is compromised by the random nature of tumour. Furthermore, existing regis-
tration methods in use with anatomical models, typically featuring a mutual
information similarity measure and global affine-initialized spline-based trans-
formation, do not apply readily to an anatomy that features many components,
ideally transforming independently from each other, in contrast with brain or
breast registration. To further complicate matters, some components, such as
ossicular bones, may in fact be missing, as a result of a previous operation.

In spite of the limited resolution, segmentations of clinical CT scans have been
used to visualize and model the ear. For example, Seeman et al. [3] demonstrated
manual segmentation of middle and inner ear structures from high resolution
CT, and suggested a combination of surface rendering of soft tissues and volume
rendering of bone. Most use of clinical scans for the ear has involved manual or
simple threshold-based segmentation, although Xianfen [4] used a combination
of manual and 3D level-set segmentation on CT data.

Non-clinical imaging modalities such as histology, micro-CT and high-field
micro-MR imaging permit much better identification of small middle and inner
ear structures and have been used by a number of groups for generic anatomical
modeling. Folowosele et al. [5] demonstrated the descriptive quality of high-field
magnetic resonance imaging in producing models of the middle and inner ear.
One of us published results [6] of expert segmentation of high-field micro-MR
data [7], and it is the model refined from the triangulated boundaries of this
segmentation that is applied clinically in this paper.
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We propose a method for producing a patient-specific description of the mid-
dle and inner ear on the basis of the minimally supervised registration of a high
resolution model elaborated from micro-MR to patient CT, where the transfor-
mation between the model and the patient data is determined in a component-
wise coarse-to-fine strategy. To our knowledge, this paper is the first to advocate
this approach to addressing the clinical requirement of ENT surgeons for re-
liable patient-specific anatomical description of the ear for surgical planning.
Moreover, the middle resolution of our coarse-to-fine strategy coincides with an
anatomically motivated piecewise affine transformation, and ours is one of few
methods that uses such a computation stage prior to a freeform transformation.

Our main assumption is that CT data of currently available image resolu-
tion (.2mm× .2mm× .3mm), whose manual segmentation comes at the cost of
considerable overhead and is challenged by fine structures such as the chorda
tympani, contain sufficient image information to determine a registration with
a descriptive micron-scale model, especially if the transformation is modeled
appropriately for the anatomy. Another important assumption is that this reg-
istration process can be initialized on the basis of minimal supervision, namely
through a few homologous point pairs, while also taking into account user-
provided anatomical information, such as the absence of a relevant anatomical
component. Lastly, our perspective towards the usefulness of the piecewise affine
transformation is inspired by Frangi [8], who modeled global motion of the left
and right ventricles of the heart separately in the freeform estimation of cardiac
motion, and by Pitiot [9], who viewed the deformation between cryosection slices
as piecewise affine in the reconstruction of the brain.

This paper is divided into the following sections. In the Methods section, we
first provide details about the high resolution model of the middle and inner ear,
and the micro-MR data from which it was obtained. We describe the minimally
supervised process of registering the micro-MR data to patient CT, and applying
this transformation to the ear model. We validate the registration and illustrate
a co-registered CT and model in the Results section, and finally, discuss the
results and future directions in the Conclusions section.

2 Methods

2.1 Application of a micron-scale model of the middle and inner ear

The ear model that is used in our research features triangulated boundaries
of the components of the left middle and inner ear of an invidual, and has
been manually segmented by ear researchers from micro-MR data of 78.125 µm
isotropic voxel. The model can be seen in figure 2 (a), and the axial plane of
the raw micro-MR data is seen in (b). As can be seen in the figure, these data
exhibit considerable intensity inhomogeneity due to magnetic susceptibility, and
this issue was addressed with automatic inhomogeneity correction software [10],
to improve the correlation between voxel intensity and underlying tissue, and to
make the image-based registration more reliable later on.
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Our philosophy is to require only limited user supervision in initializing the
search for the appropriate transformation. The objective of our method is to
determine the transformation T(x, y, z) between the generic, micro-MR model
data and the patient CT data:

xP = T(xM ) xM , (1)

where xP and xM express patient and model coordinates respectively, and
T(xM ) describes a transformation that may vary according to model coordi-
nates. This transformation can then be applied to the high quality middle and
inner ear model derived from the micro-MR data.

Generally, registration can be viewed in terms of 3 stages: choice of transfor-
mation T, choice of similarity criterion, and optimization over some parameter
space for the best T that fulfills some objective function based on similarity. The
method of choice for multi-modality registration is mutual information maxi-
mization [11], as it is based on the most general assumption between the two
modalities, i.e.: that modality A is predictive of modality B in the information-
theoretic sense, without there necessarily existing a functional relationship be-
tween the two. Methods of this kind define the mutual information between two
images A and B as:

I(A, B) =
∑

a

∑

b

p(a, b)log
p(a, b)

p(a)p(b)
, (2)

where p(a, b) is the intensity joint probability distribution of the images and p(a)
and p(b) are the corresponding marginal distributions. The transformation that
is sought is the one that maximizes this measure of image similarity, over the
space of admissible transformations.

The choice of transformation must reflect realistic assumptions about the
nature of the spatial relationship between the two sets of data. Given that the
anatomy that we are registering is composed of several parts that naturally trans-
form component-wise across individuals, it makes sense to view the transforma-
tion as a generalization of a piecewise affine transform, i.e.: a piecewise affine reg-
istration followed by a spline-based freeform transformation. The main difficulty
is representing the transformation in a manner that is sufficiently descriptive

to be applied across patients, while limiting the possibility of the optimization

becoming mired in local optima associated with a free-form transformation.
One must bear in mind that the number of degrees of freedom of a freeform

transformation can easily dwarf that of a piecewise affine transformation re-
quired over a volume like this one, especially if one were to fit a regular grid
over the volume spanned by the middle and inner ear with the density required
of such a descriptive mapping. In our case, the piecewise affine mapping is de-
termined by 7 parameters: rigid transformation plus one scale, also known as
Procrustes transformation, per component, times the number of components.
The Procrustes registration is chosen over other options, namely 9 or 12 pa-
rameters, because it produces numerically stable results [12], so as to provide a
reliable initialization to the last stage. Moreover a global affine transformation
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provides no initialization to finding spline coefficients in a manner that it does

to a piecewise affine transformation, so that if a piecewise affine assumption is
appropriate for the spatial correspondence, then this middle stage is more consis-
tent with a coarse-to-fine approach to such an inverse problem, as used in stereo
vision for example [13], than proceeding directly from a coarse level coinciding
with the global affine to a spline-based fine level.

Our basic approach is then:

1. A global rigid registration based on 5 or more homologous pairs [12]:

TGR,HP (x) ≡ RHP x + tHP , (3)

where RHP and tHP are a rotation matrix and a translation vector deter-
mined by homologous point pairs, and points are chosen for their identifiabil-
ity and for spanning a sufficiently large volume that subsumes the anatomy.

2. A global affine registration based on mutual information maximization:

TGA,MI(x) ≡ sMIRMIx + tMI , (4)

whose starting point is the result of step 1, and where s is a scale factor.
3. A component-wise piecewise affine registration, also based on mutual infor-

mation, each of whose component transformation is initialized by the result
of step 2:

TPA,MI(x) ≡
{

sMI,kRMI,kx + tMI,k | k={TM,FN,CT,V O,O}

}

, (5)

where k designates an anatomical component: tympanic membrane (TM),
facial nerve (FN), chorda tympani (CT), vestibular organ (VO), ossicles (O).

4. A thin-plate spline-based mutual information registration TTPS,MI(x), which
captures the remaining deformation between each affine-transformed com-
ponent and the corresponding component in the patient data set:

Tfinal(x) ≡ TPA,MI(x) + TTPS,MI(x) . (6)

2.2 Registration: initialization by homologous pairs and mutual

information-based global affine and piecewise affine stages

Some level of supervision is necessary to provide the registration with knowledge

of which side of the head is involved, left or right, so as to first apply a reflection
about the y − z plane to our high resolution model of a left ear if confronted
with a right ear procedure. Requiring the user to provide the system with a
small number of homologous points, previously identified on the model, as seen
in figure 3, is consistent with our definition of minimal user supervision.

The homologous points seen here coincide with the points of attachment
of malleus to the tympanic membrane, of the incus to the malleus, and of the
malleus to the stapes, as well as the centre of the cochlea, and the meeting
point of the semi-circular canals on the vestibular organ. If ossicles are missing

IGSTI'08                                                 5



due to a previous resection, landmark-based initialization is still possible, but
would require other recognizable, geometrically well defined points in the middle
ear. The homologous pairs determine a well-tested rigid registration based on
singular value decomposition [12]. If there are doubts about the validity of any
pair, the computation of the transformation by robust statistics is also feasible.

Furthermore, we are also planning to incorporate into our interface provi-
sion for additional user interaction, namely indicating the absence of relevant
anatomy where previously resected and providing seed points for segmenting a
choleastoma, which after all cannot be predicted by statistical model.

The global mutual information registration method is as proposed by Maes [14],
and determines the optimal 7 parameters coinciding with rotation, translation
and scale. The search for optimal R, s, t is given the starting point of the
transformation TGR,HP (x) in expression 3.

The piecewise affine method is given the starting point of TGA,MI(x) in
expression 4, and makes use of anatomical masks computed from the triangulated
surfaces of each component, stored as Stereo Lithography (.stl) file, in particular
the vertices and normal orientation of each face. We estimate the surface normals
at the vertices by averaging the normals of the faces coincident with each vertex.
We then bucket-sort the vertices, storing the position and normal of each.

Thereafter we label as inside or outside the surface every voxel tested in
the model image, within the x − y − z span of triangulated boundary of the
anatomical component, by looking at the sign of the projection of the vector
from each nearby boundary vertex vM,i to the position (world coordinates) xM,j

of that voxel. For a vertex with an outward normal, the vector xM,j −vM,i from
the vertex to a contained point should have a projection on its outward normal
that is negative, and we seek to enforce this negative projection as a consensus
over a small neighbourhood of the vertices nearest to each tested point.

Moreover, for these masks to be useful in restricting the search for their re-
spective optimal local transformation, they must be dilated from the set of voxels
strictly contained by each anatomical boundary. The dilation must be sufficient

(a) (b)

Fig. 3. Illustration of homologous points used to provide a rough initial rigid trans-
formation: selected in (a) microCT data, and (b) in patient CT data, overlaid on
semi-transparent triplanar views of the corresponding data. These points are chosen
for their identifiability as landmarks.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Anatomical masks for piecewise affine reg-
istration, overlaid on micro-MR data (axial view):
(a) chorda tympani, (b) tympanic membrane, c)
ossicles), (d) vestibular organ, and (e) facial nerve.
(f) Dilated mask from facial nerve in (e).

Fig. 5. Visualization of thin-
plate spline anchor points, in
model space, with colour code
as in figure 4.

to contain the equivalent structure in the patient data putatively transformed
by the global affine transformation. Figure 4 illustrates some masks coinciding
with contained voxels and their dilated results. 24 iterations of a structuring
element of 6 voxels is applied to the exact anatomical masks is used to produce
the dilated masks.

2.3 Thin-plate spline registration based on mutual information

The last registration stage is a parametric approach, where the mutual informa-
tion cost function is implemented using the efficient Parzen-windowed formula-
tion of Thevenaz and Unser [15]. The deformation is modeled using a thin plate
(TP) spline [16, 17] defined over a set of landmark points, as seen in figure 5.
These points are chosen manually to span the structures of interest in the model
well. This is done once on the model, and not on patient data: it does not factor
into the supervision required of the user in the future.

Thin plate splines can suffer from the problem of creating non-diffeomorphic
warps, that is folding or tearing of the space being deformed. Folds or rips
occur when a part of the mesh of landmark points is ”turned inside-out” by
the transformation. This problem is avoided heuristically by visually selecting
points so that they do not form any long, needle-like tetrahedra – as these are
more likely to be flipped. The spline is parameterized by the positions of these
landmark points in the moving image [18]. The mutual information is optimized
over these parameters using a quasi-Newton optimization approach [19].

A similar multimodal registration approach was described in [20], but this
approach used a B-spline deformation model rather than a thin plate spline
model. The thin plate spline model is justified for this application for a num-
ber of reasons. The structures of interest are quite complicated in shape, and
a detailed deformation field is necessary to accurately register them. Since the
B-spline model is defined on a regularly spaced grid, in order to have fine detail
in one area, it is necessary to have fine detail everywhere. This would greatly
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(a) (b) (c)

Fig. 6. Illustration of registered model overlaid on patient data set: (a) semi-
transparent surface rendering of registered model over orthogonal plane of patient
data; (b) zoom image of anatomy in (a); semi-transparent illustration of planar view,
showing all 5 components on patient data.

increase the number of parameters, slowing the optimization. The additional
control points would also make the B-spline more flexible, and additional regu-
larization would be needed to keep it from generating spurious deformations.

3 Results

Figure 6 presents a visualization of preliminary results of the piecewise affine
initialized TP spline registration of the model applied to a patient data set. In
the 3D views, the semi-transparent surfaces can be seen overlapping locally dark
or light well circumscribed areas of the CT data, especially in the zoomed image.
For example, the vestibular surface, shown in red, can be seen overlapping well
over dark voxel areas in the 3D-projected planar views of the patient CT. The
ossicles’ intersection with the orthogonal planes, in contrast, coincide with light
areas. The 2D visualisation presents a similar picture, where in particular the
dark areas under the vestibular organ and facial nerve are visible. However, the
chorda tympani, in purple, is not actually visible in much of the CT data.

Figure 7 overlays registered results on manually labeled results, as visualized
by semi-transparently rendered surfaces. The registered facial nerve is clearly
longer than the manually labeled surface, due to the lack of image data to con-
strain the registration lengthwise, in contrast with other anatomical components
that are well circumscribed everywhere. In part, this is due to lack of contrast
with other soft tissues within the cranium. The chorda tympani was not visible
enough in CT to enable a manual segmentation.

The sensitivity of the method is featured in table 1. It is difficult to define a
fair measure of a true negative in this case, so we have not compiled specificity
statistics. The registration method produces a somewhat lesser sensitivity than
expected for the facial nerve and tympanic membrane, given qualitatively en-
couraging visual results. First, it remains to be seen how these errors compare
to intra- and inter-rater variability, given the small scale of the structures in
relation to the voxel size and sensitivity to choice of threshold for some tissues.
Explanations for each error must be examined on a component-by-component
basis. In the case of the facial nerve, errors tend to occur near the ends, where
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(a) (b) (c) (d) (e)

Fig. 7. Illustration of semi-transparent registered model surfaces, shown with surfaces
of manually labeled tissues rendered in grey: (a) facial nerve; (b) ossicles; (c) tympanic
membrane; (d)-(e) evolution of vestibular organ: (e) TGA,MI and (e) Tfinal.

component & stage TGR,HP TGA,MI TPA,MI Tfinal

vestibular organ 54.6 54.9 59.8 86.7
ossicles 49.5 41.3 61.4 79.1

facial nerve 30.8 32.7 34.7 53.6
tympanic membrane 10.3 8.1 15.2 44.9

Table 1. Sensitivity values (%) for registration stages.

the local affine transformation is most challenged, for lack of image contrast
in CT. In order to make the TP spline elastic enough to overcome this error,
one would introduce spurious deformations in the intracranial area. Moreover,
currently our method treats all ossicles as one component, but would benefit
from registering the malleus, incus, and stapes individually. Last, the tympanic
membrane features low intensity data. Here, the mutual information parameters
can be better adapted for this small intensity range over all stages. In addition,
a 9 or 12-parameter affine stage can be considered prior to the TP spline stage.

4 Discussion

This paper presented preliminary results of a method for applying a piecewise
affine-initialized thin-plate spline transformation to a high-quality model of the
middle and inner ear, towards the surgical guidance of ear surgery. We demon-
strated a computationally stable coarse-to-fine approach where piecewise affine
and local TP-spline stages coincided with significant improvements in the regis-
tration. The results indicate that with further refinements, minimally supervised
model computation for the guidance of ear surgery is feasible.

Our method currently does not eliminate the possibility of overlap between
registered components after the piecewise affine registration. In other words,
this registration stage does not enforce diffeomorphism. It is however feasible
to achieve such a mapping with a simple heuristic: the overlapping region be-
tween registered components can be ascertained, and the average of the com-
peting affine-transformed positions could be assigned to each voxel in that area.
Thereafter, each non-overlapping voxel would be given a new position that is a
weighted sum of this average and its original transformation applied to its coordi-
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nates, where the weight would vary with distance to the overlap. A best-fit affine
transform could then be derived from these heuristically estimated positions .
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